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1 Introduction 
The ambition of the PSIRP project is to define a new architectural waist for a Future Internet in 
which information is at the very heart of the network’s operation. This new waist of an inter-
networking architecture is defined and specified through a series of deliverables that 
addresses a variety of issues related to the project’s ambitions. These issues range from 
design principles over design considerations to outlining design and implementation choices. 
This produces a broad set of material that is considered to be helpful for the project as well as 
for the wider community in order to further develop the basic ideas and concept of PSIRP into 
a workable prototype of this Future Internet.  

This document should be approached in this evolving work context. It is an update and 
extension to ideas presented throughout the other documents of the project, most notably the 
first and second architecture deliverable, D2.2 and D2.3 respectively. Hence, one should not 
expect a final specification of our architecture that can be handed to a system engineer for 
implementation. Instead, this document sharpens and continues our work in several key 
areas. Firstly, we present a section that positions our previous work on design principles and 
concepts in the context of defining invariants of our architecture, i.e., properties that we see as 
inherent for any design choice based on our thinking. Secondly, we provide an update on 
design considerations and choices for major components and areas in our architecture, 
ranging from inter-domain functions over identifier considerations to security and transport 
considerations. Last but not least, we summarize the key points that we see as the major 
contributions of the project’s efforts in an attempt to set out an agenda for future work. 
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2 Architecture Invariants 
In [PSI09], we outlined the design principles for developing the PSIRP architecture. 
Throughout our work, these principles have laid the foundation for a set of invariants of our 
architecture, i.e., properties that do not change throughout the implementation and execution 
of said architecture. We believe that the formulation of such invariants is an important step in 
our development since it constitutes an understanding as to what is fundamental not only for 
the design of the architecture but also in its realization. Hence, while the principles focus on 
the design, we now conclude that the following properties are fundamental to the actual 
implementation of what we have designed so far. 

Given that the PSIRP architecture provides a replacement for the IP waist in the current 
Internet hourglass, we see the following invariants being provided at the waist level: 

 The first invariant is that of flat label identifiers as being the means to identify 
information items as the main entities of the architecture. An information item is 
generally any collection of data that is relevant within a given application context. It can 
represent a principal of a transaction, a policy rule acting on another piece of data, or a 
pointer to some imaging data. In our new waist, each information item is identified 
using a statistically unique flat label identifier. These identifiers are self-generated and 
the associated semantic of the information is only known to the applications generating 
the said identifiers. As an example, a video publisher might generate an identifier 
through hashing a human-readable name of a video into a suitable identifier1.  

 The second invariant is that of scoping as a means for hierarchically ordering 
information along certain application structures. Each information item is placed in at 
least one scope. There may be one or more global scopes, which make information 
items reachable to anybody. A scope, therefore, becomes nothing more than a special 
information item, holding other information items within an application-specific 
structure. An example of a scope could be a set of pictures or a group of friends in a 
social network.  

 The third invariant is the service model of the waist, which consists of publishing of 
and subscribing to individual information items within a scope. We argue that this 
model is conceptually broader than traditional request-response service models that 
are largely present in the current Internet although such models can be implemented 
through, e.g., including identifiers for response information into the original request 
publication with the client subscribing to the response identifiers and the server 
publishing to it.  

 The fourth invariant is that of providing functions for finding information, determining 
a valid delivery graph, and forwarding information (packets) along that graph. It is to be 
noted that these functions are often separated in implementation but they may also be 
merged as a result of (often local) optimization.  

Although the goal of our work is not to show the application of these invariants to ANY 
information-centric architecture, we believe that a fundamental architectural discussion is 
required around possible properties (and even invariants) of a set of architectures with goals 
similar to those of PSIRP. We acknowledge and highly appreciate the contribution of John 
Wroclawski (USC-ISI) and Karen Sollins (MIT CSAIL) to this discussion. The formulation of 
the PSIRP invariants and the discussion of their potential central role as inherent properties of 

                                                 
1 Not an invariant but an important design tool is the notion of algorithmic identifiers. Here, a common algorithm is 

utilized among a set of network elements to logically bind information items to a collection of items. Through 
such a common algorithm, network elements can determine, for instance, parents or sibling relationships 
among information items. Functions like error control, caching, sequencing and others can utilize these 
mechanisms but upper layer applications can also effectively order the relations of items through such 
algorithmic relations and utilize lower network functions for improved dissemination of such collections. 
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a certain class of information-centric architecture is a direct consequence of intensive and 
ongoing discussion and collaboration with both of them. 

2.1 Design Considerations 
From our invariants outlined above, a set of design considerations follows that are directly 
related to the invariants. More specific implementation and design considerations are 
presented in Section 3. 

2.1.1 On Layering 

The invariant of utilizing labels and scoping for structuring information goes further than 
attempting to provide application developers with a more natural way to access the network. 
Together with the other invariants, it leads to a concept of layering that describes a new way 
to build up a layered architecture – defining a new Internet hourglass. 

Referring to Figure 2.1, the invariants of information items within scopes are utilized above the 
waist to implement scopes of discourse through the composition of scopes. These composed 
scopes can be used as constraints in the pub/sub operations that act upon a particular 
information item. With this, we assert, concepts of context, scope of information reachability 
and other social constructs can be implemented through recursively applying a scoping 
operation. 

For instance, a high-level service such as Facebook might constitute a very large scope, 
exposed in the global scope(s) for universal reachability towards the members of Facebook. 
This larger scope can be further constrained by individual group or friend scopes, eventually 
limiting the reachability of the information items residing in these scopes of discourse. The 
reachability of the information items to given sets of users, e.g., your friends on Facebook, can 
be limited through realizing access control mechanisms for particular scopes. Hence, with this 
set of constraining scopes, various communication patterns within social networking 
applications can be implemented. 

 

Figure 2.1: A New Hourglass 

In another example, one can represent an organizational structure, in which a corporation is 
reflected in the highest scope (within the organization) with further scopes being used to 
constrain information to, e.g., business units, departments, groups, or individuals. It is likely 
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that a resolution mechanism will exist for resolving human-readable concepts onto the scopes 
of discourse and the labelling within each of these scopes. 

At the level of the waist, a new API is exposed to the application developer. Proposals have 
been made for such a new API, e.g., in [PSI09]. Common to these proposals is the higher 
level of abstraction where individual information items are requested through a pub/sub-like 
service model, following our third invariant outlined above. 

While we utilize the scoping concept above the waist to implement social structures through a 
composition of scopes of discourse, scoping is utilized below the waist, too, as scopes of 
implementation. Here, the discourse is that of realizing the delivery of information across 
actual transport networks. Scopes are utilized to define the boundaries for a functional model 
of network functions that determine the dissemination strategy for the information items 
residing within a particular scope. Hence, it provides a region of consistency to implement the 
necessary functions for dissemination.  

As stated in our fourth invariant, these major functions relate to the finding of information, the 
formation of an appropriate delivery topology, and the final act of delivery along the formed 
topology. As indicated in Figure 2.1, such boundaries can be thought of as node-internal 
strategies, link-local strategies, strategies within single domains, or across domains. For 
instance, the implementation of the information-centric protocol stack of a PSIRP node 
provides a private, node-local scope for inter-process communication as well as scopes for 
intra- and inter-domain network functions, utilized for local forwarding, topology management, 
rendezvous and alike.  

The techniques described in [Jok09] outline an intra-domain forwarding solution, which 
effectively implements a series of overlapping link-local scopes within a single intra-domain 
scope. In this case, the information is being disseminated as a series of packets transmitted 
from a publisher (or domain ingress) node. This level of implementation is possibly several 
“layers” under that of the application developer’s original publication since additional network 
functions such as segmentation and error control can also be supported as separate scopes 
of implementation. This effectively leads to extending a high-level API that is exposed towards 
the application developer with functions for memory-like access, as outlined in [PSI09]. 

The lesson learned here is that having information as a common thread provides an appealing 
layering concept where functions of information finding, topology formation and delivery 
(forwarding) recursively appear throughout all layers. This enables a commonality in design 
that can be utilized for developing a rigid design framework for an overall architecture. While 
we can see examples for such layering in work such as [PSI09, Fot09], its benefits are still 
open to evaluation. Only the development of a coherent design framework based on such 
layering is likely to provide the insight needed for assessing the potential benefits of this 
design. 

2.1.2 On Separation of Functions 

We stated above that the existence of functions for finding information, building a delivery 
graph, and forwarding information along this graph is a crucial invariant of our architecture. 
This brings up the issue of separating these functions or merging them for implementation 
(and often optimization) reasons. It is vital to understand that this issue is important in the 
nature of implementing a scalable information-centric architecture. The following example is 
constructed to underline this point. 

Let us think of a social networking very much akin to today’s solutions, like Facebook. A large-
scale social network such as Facebook is likely to be distributed all the over the world in terms 
of publishers and subscribers. In other words, one can think of it as a social construct that is 
unlikely to be locally constrained. We assume that there is at least one scope of discourse that 
is hosting the information space of the social network. 
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There are now two options for implementation. First, let us consider one that is similar to 
today's Facebook in which the identifier “facebook.com” points to a (set of) server(s) that 
“host” the service Facebook. Hence, all publications to the Facebook scope are in fact 
uploads, i.e., any subscription to a named data piece is in fact routed to the Facebook server 
farm. In this case all information has in fact a location by virtue of the upload operation to a set 
of dedicated servers, whether one wanted it or not. 

Let us then consider another approach that builds on the power of storing the data at the 
publisher or at any other node. In this case, the social network is represented by the grouping 
through the discourse scope representing the social network. This is appealing to a company 
like Facebook since it still allows control over the data by virtue of possible access control and 
profiling of usage patterns while relieving Facebook from the burden of hosting the actual 
data, and therefore reducing overall costs of their operations. Any entity that happens to have 
a particular information item (such as a status update or photo) can provide the information to 
the interested subscriber. 

In this form of a social network, what would happen if functions of finding and delivery were 
not separated? For that, we assume a similar operation as implemented in CCN [Jac09]. An 
interest in a specific social network information item is broadcasted within a single domain with 
one or more nodes replying with the requested information. If the content is not available in 
the domain, a content router [Jac09] forwards the interest request to any domain that hosts 
the information. When a content router receives an interest request, it broadcasts the request 
locally in order to possibly retrieve the item. Hence, in this implementation, finding information 
and routing along a delivery graph are folded into a single operation. 

What does this mean for our scenario? In CCN terms, the discourse scope would be 
represented by a single domain, say “facebook.com”, with content within that domain being 
represented, e.g., as an XPath representation. Given the widespread geography of publishers 
in our social network, this would require that almost ANY content router in ANY domain would 
need information about 'facebook.com'. But what would this information be since there is no 
single domain that hosts the data anymore, i.e., some facebook.com data is likely to exist in 
ANY domain worldwide? As a result, ANY status update of ANY social network member is 
likely to be spread over many, if not all, domains in the Internet! If we couple this with the local 
broadcast of interest requests upon reception of such a request, the operation amounts to a 
global flooding of status updates in any network that might hold viable information about this 
social network.  

What is the lesson to be learned here? It is that, if information is location-less (which is often 
the case), finding the information needs to be separated from the construction of an 
appropriate delivery graph, in order to optimize the operation of each of these functions. This 
motivates the introduction of an explicit (global) rendezvous service in the PSIRP architecture 
[PSI09]. However, it does not exclude solutions for (implementation) scopes in which functions 
are merged for optimization reasons. The choices of implementing the functions (either 
separated or optimally joined) is realized within the layering concept of Section 2.1.1 in which 
such implementation scope provides a region of consistency for implementing the functions. 
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3 Update on Architecture Components 
In this chapter, we present updates of the designs of various architectural components. These 
include inter-domain functions and various problems that need to be tackled in operations as 
well as design and security considerations for various components and operations. As 
outlined in the introduction, this material should be read in the context of existing work that is 
presented in the previous architecture deliverables D2.3 and D2.4.  

3.1 Inter-Domain Topology Formation 
Within the PSIRP architecture, the Inter-domain Topology Formation (ITF) function essentially 
provides “high-quality” routes to customers, including both end-users and ISPs. The technical 
challenge is then to optimally match the various and sometimes conflicting requirements this 
implies. Ideally, we seek to guide ITF technical design choices with regard to wider socio-
economic factors including technology supply, market conditions, user concerns (e.g. 
security/privacy) and regulatory actions. 

In this section, we summarise our progress in this field. Firstly, Section 3.1.1 employs 
modelling techniques to consider likely Internet evolution scenarios and identify any 
consequences for ITF architectural design. Section 3.1.2 then emphasises the crucial 
importance of ITF security/privacy considerations, considering a variety of security-related 
design choices for implementing an ITF function within PSIRP. Lastly, Section 3.1.3 details 
specific (preferred) options for ITF implementation and considers the likely consequences in 
practice. 

3.1.1 Design Considerations 

In the current ITF context, we have identified four scenarios as particularly relevant: 

   1. Finance: focus on the reliance on highly resilient links for financial transactions 

   2. Technology: focus on a possible breakdown of technology cycles 

   3. Routing: focus on possible routing choices 

   4. Privacy: focus on possible backlash against privacy evading technologies  

Details are discussed below but we note that the first two cases are relatively simple (serving 
largely to calibrate and validate the models) while the remaining two scenarios are more 
PSIRP-specific. To help understand the broader socio-economic issues, we employed a 
socio-economic evaluation approach that is based on “Systems Dynamics” modelling and 
simulation techniques. Previous work [PSI10] has described our general approach and 
methodology, identifying key variables (“stocks”) and their dependencies (“flows”), as 
summarised in Figure 3.1 below. 

With regard to the model itself, the fundamental behaviour is a flow of technology solutions to 
ITF providers, controlled by the regulator and subject to various feedback loops. The regulator 
responds to user concerns and (typically) seeks to limit market growth to ensure reasonable 
competition. PSIRP’s success will obviously be dependent on both perceived usefulness (i.e., 
market demand) and compatibility of technical design choices with the prevailing socio-
economic climate. Positive market feedback may be countered by negative regulatory 
feedback, depending on the specific scenario. 

The central role of the number of ITF providers is emphasised by its strong connectivity to 
other variables in the model. In particular, industry/end-user concerns and the effect of hype 
were assumed to be triggered by appropriate threshold parameter-values for the number of 
ITF providers. A delay between regulatory decisions and actions was also introduced to 
provide additional flexibility and realism. From a modelling perspective, the current trend 
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towards collaborative regulation [Hui02] may also be captured by allowing parameters to 
assume flexible values (in order to perform a “sensitivity analysis”). 

 

Figure 3.1: ITF Stocks and Flows 

For definiteness, as a “base case” for model calibration and validation, we assigned 
parameter-values for the rate of both technology and market development, together with other 
variables, as shown below. 

Quantity Value Units 

Technology development rate 30 solutions/year 

Market development rate 20 providers/year 

Threshold for industry/end-user 
concerns 

30 
number of 
providers 

Threshold for hype 50 
number of 
providers 

Regulatory delay 3 months 

Table 3.1: Base Case Parameter-Values 

3.1.1.1 Model Calibration 

For Scenario 1, we envisaged a situation where the available capital investment changes 
markedly over a 20-year timescale, expecting a differential impact on PSIRP take-up relative 
to more conventional network offerings. In view of recent global economic upheavals, 
fluctuations in the wider economy (e.g., telecom bubbles vs. global recession) could obviously 
strongly affect PSIRP’s viability/success; this is particularly true for a new technology seeking 
to establish a foothold against incumbent competitors. In terms of our model, we allowed 
market development to oscillate from “boom to bust” over 5-year cycles and compared 
behaviour with the base case. 

As expected, results in Figure 3.2 demonstrate that the number of ITF providers is very 
sensitive to such fluctuations, varying in sympathy with investment fluctuations due to a strong 
feedback via hype to perceived usefulness. Our model suggests that the corresponding effect 
on ITF solutions is much less marked. Varying investment only influences ITF solutions via 
secondary feedback through end-user competition concerns to the regulator. At a deeper 
level, this emphasises that judgements on how investment affects providers and solutions 
(simultaneously) will be crucial to both modelling (where the coupling between such influences 
must be parameterised) and ultimate PSIRP success/failure. 
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Figure 3.2: Finance Scenario 

With regard to Scenario 2, both memory and processing limits might represent serious 
technological causes for concern [Mey07] in rolling out any new technology. Historically, 
Moore's Law tended to ensure technology scaled at rates surpassing the growth rate of 
information but the Law (arguably) does not apply to building high-end routers; growth in 
resources available to routers could eventually slow down and may even stop, while network 
demand continues to grow. It seems intuitive that, as a new entrant, PSIRP will be particularly 
vulnerable to any sustained technological slow-down. To explore likely consequences within 
our model, we modified technology development to simulate a progressive breakdown of 
Moore’s Law in 5-year discontinuous bursts, once again comparing with the base case. 

 

Figure 3.3: Technology Scenario 

Results in Figure 3.3 show a strong tendency for the number of ITF providers to rise 
(exponentially), modulated by the periodic burstiness in technology flow. In our model, 
decreasing the flow of ITF solutions lessens regulatory feedback control exercised over ITF 
providers, which experience a surge in growth due to the investment stimulus. This 
emphasises the critical interaction between positive market feedback and negative regulatory 
feedback, as mentioned above. In a practical situation, it would be necessary for the regulator 
to react more quickly to changing socio-economic conditions [Vai09]. 

Our experience with the Finance and Technology studies provides strong confidence that the 
model successfully captures system behaviour in an intuitive fashion. We now consider the 
more PSIRP-specific Routing and Privacy scenarios. 

3.1.1.2 (Inter-domain) Routing Scenario 

With regard to inter-domain routing and connectivity, PSIRP essentially offers the possibility 
for providing high-quality (VPN-like) routes at a (premium) price through dedicated ITF 
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providers. In this scenario, we investigate the trade-off between likely performance (e.g., 
delay) improvement [Quo07, Raj08] and price, to better understand the market for such 
services and implications for ITF design decisions. 

There is a general regulatory trend away from legalistic requirements towards more co-
operative regimes with shared/devolved responsibility. Previous modelling work [Vai09] has 
tended to reflect this, focusing on how telecommunication regulation must become more 
flexible in the face of potentially disruptive technology changes. Failure to do so will inevitably 
compromise the delicate balance between regulatory control and innovation. From a provider 
viewpoint, we also note the trend towards partial transit, paid peering and multi-homing, which 
could significantly affect ITF design choices; similarly, net neutrality remains a hot topic with 
potentially significant implications for network access regulation. 

To study these effects within our model, we introduced an ITF advantage reflecting how 
improved PSIRP performance would be expected to increase perceived usefulness of an ITF 
service. In principle, the ITF advantage is itself dependent on many other factors, as depicted 
in Figure 3.4. Apart from direct performance improvement, these might include user incentive 
to interconnect and specific PSIRP architectural design choices. 

 

Figure 3.4: Routing Stocks and Flows 

For modelling purposes, we assumed an initial take-up as users became increasingly 
prepared to pay more for better service, eventually levelling off and then terminating over a 
more extended period as users gradually came to regard such improvements as “normal 
service”. As shown in Figure 3.5, the number of ITF providers behaves qualitatively as in the 
base case (Figure 3.2), first rising then falling back towards a regulatory plateau. However, in 
the longer-term the market becomes increasingly sensitive to variations in ITF advantage with 
less evidence of a stable plateau as ITF advantage falls towards zero. Once again, the critical 
interaction is between positive market feedback and negative regulatory feedback, as already 
emphasised in Technology Scenario 2. 
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Figure 3.5: Routing Scenario 

3.1.1.3 Privacy Scenario 

This scenario explores tradeoffs between the importance of the various user choices and 
consequences for PSIRP ITF design decisions, such as the balance between source routing 
and topology hiding (emphasising importance of pub/sub and ISP choice, respectively). In 
particular, we investigated a situation where pub/sub choice was paramount due to customer 
anger at a series of privacy lapses, leading to adverse ITF publicity and consequent user-
backlash. 

In general, the dramatic increase in computing power, bandwidth and storage capacity has 
radically increased the ability of organisations to collect, store and process personal data. This 
is a potential cause for concern [Bro09]. On the one hand, new technologies like ubiquitous 
computing, surveillance technologies, biometrics, behavioural advertising, or social networking 
provide a hitherto unknown capability for eroding privacy. On the other hand, general social 
and political fears of terrorism or organised crime may drive both public and private authorities 
to make use of these possibilities. Overall, these developments are generally thought to pose 
a serious challenge to existing privacy laws and principles. Cybercrime remains a major issue 
for policymakers and law enforcement agencies. Besides problems with fraud, key concerns 
include malware, spam and cyberwar attacks. 

As an obvious privacy-related example, we might mention eHealth and telemedicine 
applications. While the medical and economic benefits of integrated health information 
systems may be substantial, the usual public policy concerns associated with large-scale 
information systems apply. Given the extraordinary sensitivity of personal health data, special 
attention must be given to issues of privacy and IT security. A key challenge will be to make 
the best possible use of eHealth technologies for the benefit of the patient while complying 
with local privacy and security regulations. 

Within our model, the significance of design choices (PUB/SUB for our chosen scenario) is 
measured by their compatibility with the current socio-economic situation. Once again, each 
choice is itself dependent on many other factors, as shown in Figure 3.6 where PUB/SUB 
choice will depend on a mix of user concerns for security and trust, access regulation and the 
user-ISP tussle over routing control [Lak04]. 
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Figure 3.6: Privacy Stocks and Flows 

In modelling such a scenario, we parameterised the pub/sub choice assuming a series of 
major privacy/security incidents occurring every few years, each lasting several months. As 
expected and shown in Figure 3.7, the number of ITF providers behaves similarly to the base 
case. However, longer-term behaviour is heavily modulated by fluctuations in regulatory 
pressures, caused by user-backlash. Our model suggests this is at least a 10-20% effect. If 
regulatory effects were actually somewhat weaker than assumed here, market forces would 
ultimately cause the number of ITF providers to rise exponentially, as observed in Technology 
Scenario 2. Again, this emphasises the critical interaction between competing positive market 
feedback and negative regulatory feedback. 

 

Figure 3.7: Privacy Scenario 

3.1.1.4 Summary 

In light of the modelling and analysis carried out, the following broad conclusions may be 
drawn: 

 Our model successfully captures system behaviour in an intuitive fashion; in a typical 
scenario (Figure 3.2 base case), the number of ITF providers initially rises and then 
falls back towards a regulatory plateau. 

 The market is very sensitive to investment fluctuations due to strong feedback via hype 
to perceived usefulness; our model suggests that the corresponding effect on ITF 
solutions is much less marked; more generally, judgements on how investment might 
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affect both providers and solutions simultaneously will be crucial to PSIRP 
success/failure. 

 The competition between market and regulatory feedback is critical; our model 
suggests this is at least a 10-20% effect (e.g., Privacy Scenario), underlining the 
importance of tuning ITF architectural design choices to the prevailing socio-economic 
situation.  

 If regulatory effects were relatively weaker than assumed here, market forces 
(reinforced by ITF advantage) would ultimately cause the number of ITF providers to 
rise exponentially. 

 Similarly, the regulator must be ready to react sufficiently rapidly to changing socio-
economic conditions (e.g., user-backlash)  

The overall conclusion must be that the ideal ITF architectural design will represent a 
compromise amongst all these influences, with particular emphasis on security/privacy 
aspects. Accordingly, security considerations are discussed in more detail below. 

3.1.2 Security Considerations 

In previous deliverables, e.g., [PSI10], the role of the ITF, or Inter-Domain Topology Formation 
function was explained. This function takes information about the location of subscribers, 
together with network information and policies and preferences from different parties in order 
to choose a forwarding path (or tree). What is not clear is how the ITF interacts with other 
functions in the architecture. This section seeks to provide some preferable architecture 
options based upon an analysis of the information involved and potential security concerns, 
classified along the following dimensions: 

 Initiator: The publisher interacts with the rendezvous function to obtain information 
about subscribers (such as their attachment network). This information may be 
returned to the publisher who then initiates the communication with the ITF. 
Alternatively the rendezvous system may initiate the contact with the ITF on behalf of 
the publisher. A final option is that the attachment network has an agent that 
communicates with the ITF. Such an agent could be the local network rendezvous or 
topology formation function, residing however within the same trust boundary as the 
local forwarding network. 

 Recipient: Although we would usually assume that the recipient of information from 
the ITF might be the initiator of the forwarding path request, this may not be the case. 
For example, even if the publisher communicates with the ITF, the forwarding path 
may be returned only as far as the local forwarding network, with the remainder hidden 
from the publisher. The publisher is then given a path only as far as the forwarding 
network that holds the rest of the forwarding path information. 

 Control point(s): Where is the forwarding path actually selected? At one extreme the 
ITF may supply all relevant forwarding information leaving the choice and construction 
of the forwarding path to other parties (such as the publisher). At the other extreme the 
ITF will receive all concerns and policies and decide upon the best forwarding path. 
Intermediate ITF solutions may provide a restricted range of forwarding information or 
paths, leaving the final decision to another party (such as the publisher). In this case 
the ITF trusts the publisher (or other party) with more information, but the publisher 
may hide some of their concerns and eventual choices from the ITF. 

 Level of client information: Different levels of information may be returned by the 
ITF. Loosely we can consider that the ITF may return a single constructed path, 
multiple paths, or a collection of path segments. In the latter two cases the publisher 
(or other entity between the publisher and the ITF) is left to make the final path 
decision (or even use multiple simultaneous paths). 
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 Level of network information: It is not yet clear how end to end forwarding paths are 
expressed. Options include each forwarding network sharing zFilter paths across their 
network (that can then be aggregated to form an end-to-end path) or using virtual 
paths for transition routes across forwarding network. Such virtual path identifiers can 
then be replaced/supplemented by a local network zFilter. Other options may be to use 
AS identifiers or finer-grained waypoints within the networks. The level of information 
supplied by each forwarding network (via their internal topology management) to the 
ITF determines what level of information may be supplied onward to the publisher or 
other parties and may depend on the trust between the forwarding network and the 
ITF. 

3.1.2.1 Information Issues 

We shall now briefly address the various issues that arise by passing information between 
components of the architecture. 

Information Passed to ITF from Forwarding Networks: 

 Forwarding path information; this includes potential routes along with information about 
resilience, QoS, congestion etc. 

 Forwarding path policies; these policies reflect a bias or restriction on the use or 
aggregation of the forwarding paths.  

The forwarding network is assumed to have a trust relationship with the ITF provider that 
allows the ITF to establish policy conformant paths on behalf of the forwarding network. The 
ITF acts as a trusted point between multiple forwarding domains that are potentially 
competitors (while having to work together to form an end-to-end path). The forwarding route 
and policy information is competitive information and should not be shared with other 
forwarding networks. If forwarding network information is passed beyond the ITF it is assumed 
that the information will be de-sensitized (e.g. through aggregation or limited route choices) so 
that this information is no longer commercially sensitive to other forwarding networks. Detailed 
forwarding information can also potentially be used by the publishers to abuse or attack the 
network. 

Information Passed to ITF (originating) from the Rendezvous System 

 Subscriber location; this location information needs to match the level of the forwarding 
information; if the ITF is constructing routes between ASs, then the set of ASs covering 
the subscribers needs to be known; alternatively a set of waypoints (nearest to the 
subscribers) may be required instead.  

The network locations of subscribers are confidential information between the subscriber and 
the rendezvous system. However, the ITF does not require subscriber identities or even their 
number within each forwarding network – only that some subscribers exist. Although this 
desensitizes the subscriber information it is not necessary for any party other than those 
exhibiting control over the forwarding path selection to have this information. Thus if the 
publisher is not controlling the path selection, such information would ideally only be shared 
with the ITF. 

Subscribers may also have preferences and policies about how they want information to be 
delivered. Since PSIRP is a subscriber driven architecture it is preferable to allow subscribers 
to not only subscribe to information, but to have some say in how they want it delivered. This 
is technically difficult since there may be many subscribers and meeting the interests of all 
subscribers may not be in the interests of the system as a whole. For example, if different 
subscribers were to select different Quality-of-Service classes, then should all subscribers 
subsidise the high quality shared links nearer the publisher? Ultimately the issue is an 
economic one, but it also means that such subscriber information has to be communicated to 
the ITF to allow it to make the routing decision and facilitate accounting between the 
forwarding networks. 
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Information Passed to ITF from the Publisher 

This information will include publisher credentials (which can be matched to ITF or forwarding 
network policies), along with the publisher’s own policies or preferences that affect the chosen 
forwarding path(s). For example the publisher may request a specific QoS, or request multiple 
redundant paths with specified isolation properties. The requests of the publisher will often be 
confidential in terms of both the request and the path information passed back. Such 
information can be used to analyse the network activities of the publisher (e.g., destination 
networks, degree of multicast, subscriber churn, QoS preferences etc.). 

Information Passed from the ITF 

The ITF may propagate selected network path and policy information, or may pre-compute 
partial or full paths. Such information can be used to route packets across the network. Paths 
may be signed by the ITF stating that they conform to specific policies and are available only 
to a single publisher. This can prevent unintended parties from using the path. Depending 
upon the representation of the path, this information may also be used to derive network 
topology and policies and also to isolate partial path information that could then be used to 
form non-compliant paths. This latter misuse may be stopped by the lack of an ITF signature. 

Partial path information may be subject to more abuses since it may be used to form non-
compliant paths. The ITF will be unable to sign the complete path unless conversations occur 
between the controller (e.g., publisher) and the ITF. Furthermore, the more detailed the path 
information, the more knowledge an attacker will gain about network topology, and the more 
sensitive business policies will have to be shared beyond the ITF. 

3.1.2.2 Security Issues 

How the ITF communication is arranged depends largely upon two considerations: 

 Who is trusted to see the various types of information? 

 Who is trusted to make control decisions?  

In choosing an ITF communication design, we are balancing the security requirements of 
multiple parties. For example, the publisher may prefer to see all forwarding information and 
make its own choices. However, the forwarding network will not trust the publisher with 
detailed forwarding or policy information or to adhere to its business policies. Fortunately there 
are a number of other actors (such as the ITF, rendezvous system or ISP/attachment network) 
that may act as trusted intermediaries, hiding information from each party and making trusted 
control decisions. 

Forwarding Network – ITF – Publisher Tussle 

Both the forwarding networks and the publishers have some trust relationship with the ITF. 
The forwarding network trusts the ITF to establish policy conformant routes, yet protect the 
forwarding network’s confidential information. The publisher also expects the ITF to establish 
a best/fair route complying with its own preferences (which is true even if the ITF is hidden 
behind, or encapsulated within, a forwarding network or rendezvous service). However, the 
publisher may not trust the ITF with all of their preference information, seeking to make the 
final forwarding decision itself. This will create a tussle between the publishers and the 
forwarding networks, and it seems that the forwarding networks will hold the upper hand. The 
ITF will have no business if the forwarding networks do not share information with it, and they 
will not do so if their networks and businesses are compromised by the ITF sharing 
information with unknown publishers. On the other hand, it seems that a large majority of 
publishers will have little concern that the ITF, with whom they already have a certain level of 
trust, has visibility over the forwarding preferences. 
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Figure 3.8: Tussles 

This conflict is shown in Figure 3.8 as the ‘network data tussle’. In this diagram a single ITF is 
shown interacting with a single publisher and subscriber. The rendezvous systems, for 
simplicity, are shown as a single component. In a real system the rendezvous function would 
be distributed and under the control of multiple rendezvous operators. The diagram also 
shows a limited number of forwarding network functions, under the assumption that the 
publisher and subscriber each have an ISP to which they perform network attachment. In 
reality these parties may multi-home and also operate or participate in other local networks 
with different degrees of trust to that of an ISP. 

Perhaps a more compelling reason to share more fine-grained information with the publisher 
is to allow a more scalable and dynamic forwarding selection without continual recourse to the 
ITF. 

Subscriber/Rendezvous – ITF – Publisher Tussle 

Along with the tussle described above, there is a separate conflict involving the subscriber’s 
information. This is shown as the ‘subscriber data tussle’ in Figure 3.8. 

Ideally, subscriber information should not be shared with the publisher (or vice-versa) since a 
pub/sub network should provide decoupling between these parties. A publisher should be able 
to publish without knowing any details about the subscriber set, although a ‘quench’ control 
may be used to prevent the publisher wasting network resources if no subscribers exist. 

Subscribers must share subscription information with one or more rendezvous systems, and 
also attach to one or more forwarding networks. It is likely that such a subscriber ISP network 
will also operate a local rendezvous component in order to be able to perform intra-domain 
routing and route inter-domain traffic to local subscribers. 

At least summaries of subscriber locations (for example end network identifiers) must be 
communicated to the ITF in order to construct a forwarding path. This implies that the chosen 
ITF must be trusted by both the publisher (e.g. to provide a good forwarding path) and the 
subscriber/rendezvous system (not to reveal or analyse subscriber location and behaviour). 

Another question is how trusted other elements, such as the publisher or publisher attachment 
network or ISP, may be to the subscriber (and rendezvous system on behalf of the 
subscriber). Such elements may be involved in conveying information from the rendezvous 
system to the ITF or may actually use such data (for example, if the publisher is involved in 
route construction/selection). 
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Although we have described the problem as the ‘subscriber data tussle’, we must also be 
aware of the concerns of the publisher. For example, even if the publisher did not choose the 
ITF it must trust it to hold confidential information on routing requests and provide routes 
without any subversion or prejudice. If the rendezvous system participates in the 
communication between the publisher and the ITF, then that rendezvous system must also be 
trusted by the publisher. 

3.1.2.3 Design Patterns 

The discussion above leads to the identification of several design patterns for the architectural 
components interacting with the ITF. In this section we present some of these basic patterns 
and discuss their merits. The first four patterns deal with the interaction between the 
rendezvous system and the ITF. The next three patterns then deal with the amount of 
information and control given away by the ITF. Thus, one of the first four patterns may be 
combined with one of the latter three to provide an overall design choice. 

A1) Trusted Publisher Pattern: In this design, choice the publisher acts as the initiator and 
communication hub between the rendezvous system and the ITF. As shown in Figure 3.9, the 
publisher will interact in separate transactions with the rendezvous system, followed by the 
ITF. This has the obvious advantage that each transaction can be controlled separately and 
the publisher can detect and repeat any failed communication. In addition, no overall 
transaction state is held by the network (leading to potential scalability and DoS problems). 

 

Figure 3.9: Trusted Publisher Pattern 

The publisher obtains aggregate subscription information from the rendezvous system. This 
information is visible to the publisher (therefore, to some extent, compromising subscriber 
confidentiality). In addition the publisher may be expected to honour subscriber preferences 
(such as the choice of ITF or routing policies). This therefore implies that either the publisher 
is trusted to make such a decision, or that the community of ITF providers will insist on seeing 
aggregate Subscriber preference information signed by a trusted rendezvous provider 
(discrete per subscriber information signed by each subscriber would reveal too much 
subscriber information to the publisher). 

The publisher passes the subscriber information along with its own preferences to the 
selected ITF. The ITF then calculates the forwarding path and passes the forwarding 
information back to the publisher. 

A2) Direct Rendezvous-to-ITF Pattern: In this pattern, as illustrated in Figure 3.10, the 
publisher engages the rendezvous system, but the subscriber information is passed directly to 
the selected ITF without going back to the publisher. 
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Figure 3.10: Direct Rendezvous-to-ITF Pattern 

Although this obviously protects the subscriber Information from the publisher, the publisher 
must reveal routing preference information to the rendezvous system so that this can be 
passed along with the subscriber information to the ITF. In a slight variant, the publisher 
information may be encrypted so that it is visible only to the ITF. In any case the choice of ITF 
is revealed to the rendezvous system. If the publisher makes the ITF selection, then the ITF 
must be known and trusted by the rendezvous system (since otherwise the ITF may collude 
with the publisher). This pattern potentially has some problems due to the fact that the 
rendezvous-ITF interaction is hidden from the publisher. Thus, the publisher relies on the 
rendezvous system to manage communications failures to the ITF. 

Return communications from the rendezvous system and the ITF can be passed directly to the 
publisher (through the publisher subscribing to such information). 

A3) Tunnelled-through-Publisher Pattern: A variant on pattern A2 is to ‘tunnel’ the 
communication from the rendezvous system to the ITF via the publisher. This maintains the 
subscriber confidentiality but allows the publisher to control the transaction with the 
rendezvous system and ITF separately. 

To achieve this type of interaction, the rendezvous system encrypts the subscriber information 
with the ITF key. Thus, the choice of ITF must still be known to and trusted by the rendezvous 
system. This pattern is shown in Figure 3.11. 

 

Figure 3.11: Tunnelled-through-Publisher Pattern 
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A4) Forwarding Broker Pattern: If patterns A1, A2, And A3 are all unsuitable because of the 
lack of trust between the publisher, rendezvous and ITF, we can introduce a broker that is 
trusted by all these components. Since the ISP forwarding network (potentially) already carries 
the communication between these components, it is a small step to involve it in the 
rendezvous and ITF functions. 

In this pattern, a forwarding network operator introduces a rendezvous and ITF broker 
function. Although there may be several forwarding networks between the publisher, the 
rendezvous and the ITF systems, the forwarding network chosen for this task should be 
trusted by the rendezvous and ITF and used for communications to both of these functions. 
Therefore, such a forwarding network may be the publisher’s ISP. 

 

Figure 3.12: Forwarding Broker Pattern 

As illustrated in Figure 3.12, the publisher is interacting with the rendezvous system via a 
rendezvous agent that resides in the forwarding network. This may already be a natural 
communication pattern since the local ISP is likely to host a local rendezvous system that can 
also take on the role of the broker between the ITF and “foreign” rendezvous systems. 

B1) Control at the ITF Pattern: Once the ITF has received information about the subscribers, 
along with publisher preferences, it can use the information received from the forwarding 
networks to make route selections and construct the forwarding path (e.g., a zFilter). If the 
control is maintained by the ITF, then the publisher will receive a zFilter suitable for inter-
domain forwarding to its subscribers. 

This model will be used where the publisher is not trusted with finer grained forwarding 
information (for example partial paths or multiple paths). 

B2) Control at the Publisher Pattern: In this model, the publisher is trusted to share the 
route selection with the ITF. The ITF will perform some initial route candidate selection from 
the wealth of forwarding network information. It will then pass the route candidates or partial 
computed paths to the publisher. The publisher is then free to construct or choose between 
the final paths. 

This model reveals more information to the publisher, but conversely allows the publisher to 
hide some final route selection criteria from the ITF (e.g., choice of route to avoid particular 
forwarding networks). It also allows the publisher to respond dynamically by adjusting its 
forwarding paths without recourse to the ITF for every route adjustment (for example, allowing 
handover between multiple paths). 

B3) Control in the Forwarding Network Pattern: Similarly to pattern A4, the forwarding 
network can operate some part of the route selection function. At one extreme this can involve 
not passing any route information to the publisher at all (if the publisher is not even trusted to 
see the inter-domain zFilter), holding the forwarding path information in a topology agent and 
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providing the publisher with only a link to the topology agent. In other variants, meaningless 
identifiers can be provided to allow the publisher to choose alternative routes without exposing 
the zFilter. 

Such a topology agent must be trusted by the ITF to hold the route information as well as be 
trusted by the publisher to make the correct route decisions on its behalf. This pattern is 
shown in Figure 3.13. 

 

Figure 3.13: Control in the Forwarding Network 

The patterns above illustrate some simple design choices in order to understand and discuss 
architectural options for implementing an ITF function. These are intended to serve as starting 
and discussion points rather than final designs. It is important to note that any final design 
does not have to conform to a single pattern but may provide a hybrid approach. Thus for an 
architecture that is designed for both trusted and untrusted publishers, we might provide an 
optional rendezvous and topology Agent in the forwarding network. In any hybrid approach, 
the discussion then focuses on who has control of which option is taken during run-time. 

In the following section, we elaborate on one hybrid model that caters to a wide range of 
different trust relationships and forms our preferred design for a general-purpose (e.g., 
Internet) PSIRP architecture with both business and consumer services. 

3.1.3 Design Choices 

3.1.3.1 Possible PSIRP Design Candidate 

As hinted above, we have developed a preferred candidate that uses the concepts of a 
rendezvous and topology agents operated by a forwarding network (that is trusted by the 
rendezvous systems and ITF). This is shown in Figure 3.14. In this example (for simplicity), we 
assume that a single forwarding network operator can be found to meet the trust requirements 
of the rendezvous systems and the selected ITF, although in reality the rendezvous and 
topology agent can be operated in different forwarding networks with a peering arrangement 
and trust relationship. 

This design uses both of the options presented in patterns A4 and B3 to allow the forwarding 
network operator to act as an intermediary between the publisher and both the rendezvous 
and ITF systems. Such a forwarding network may be an ISP and is likely to have a contractual 
or other direct relationship with the publisher that allows the forwarding network to select the 
mode to operate in. It should also be a large enough commercial organisation to make the 
establishment of trust relationships with rendezvous and ITF providers feasible. 
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Figure 3.14: Design Candidate 

Technically, the choice of forwarding network in which to operate the trusted intermediary 
Agents can be made at run-time in two ways. The first method involves manual selection by 
the publisher. If the rendezvous system or the ITF refuses to directly interact with the 
publisher, the publisher can route its communications through a forwarding network that has 
the appropriate level of trust. This forwarding network does not have to be the attachment 
network or ISP, but may provide rendezvous identifiers to enable remote publishers to connect 
to its rendezvous or topology agents. This presents a bootstrapping problem since it assumes 
that the publisher is able to create a forwarding path to such agents. This can be overcome by 
using a rendezvous system for the agents, which freely grants the locations and subscriptions 
of these Agents and an ITF, which likewise openly constructs forwarding paths to such agents. 

The second approach uses more automation in the network. The publisher sends its 
rendezvous requests to a local forwarding network whose rendezvous agent makes a decision 
about whether it is able to handle such a request. If it believes it is not trusted to receive all 
subscriber information from the rendezvous systems it may forward the request to another 
network. This approach is not so different to the layered rendezvous architecture of PSIRP, 
with the exception that results will not be returned to the publisher, but instead only returned 
back as far as there is sufficient trust. This may then result in multiple rendezvous agents at 
different levels into the rendezvous network holding subscriber results on behalf of the 
publisher, which they are unable to pass on. These results may be sent separately to the ITF. 

Both the manual and automatic modes can work together with the publisher making the first 
choice of forwarding network rendezvous agent, and then the request being cascaded further 
into the rendezvous network. 

In the request to the rendezvous agent, the publisher includes a choice of ITF. Alternatively, 
the rendezvous agent may insert its choice if no explicit choice is made by the publisher. If the 
rendezvous agent is operated by the ISP, it is likely to be in a good position to choose a 
suitable ITF with whom they have a good trust relationship. If the request is passed to further 
rendezvous agents, then the choice of ITF must be respected by these agents (as otherwise 
subscriber information would be sent to different ITFs). In this design, we make the 
assumption that the publisher will have control over the ITF choice since otherwise we would 
have to negotiate between the preferences of multiple subscribers. 

Any rendezvous agent that receives a request from a publisher will first gather as much 
subscriber information as possible from the available rendezvous systems. It then contacts the 
ITF directly and passes to it both the subscriber information and the publisher preferences. 
Along with this information, the rendezvous agent includes a method to contact its preferred 
topology agent. 
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The rendezvous agent can also act as a cache and aggregator. For example, if a Publisher 
request is already “covered” by previous publisher requests, then it may not be necessary to 
involve the rendezvous systems. In addition, if a topology agent already has the required 
forwarding information, it may not even be necessary to contact the ITF. 

The ITF decides how much it trusts the nominated topology agent. It then calculates one or 
more forwarding paths or path segments in order to fulfil the ITF request. This information is 
then passed to the nominated topology agent. As mentioned above, this topology agent does 
not need to reside in the same operator network as the rendezvous agent. For example, the 
topology agent may be nearer to the publisher (for example in the ISP network) for network 
efficiency. 

Upon receiving the path information from the ITF, the topology agent decides how much it 
trusts the publisher, which originated the request (publisher credentials can be carried in the 
messages through the rendezvous agent and ITF). It then chooses between the following 
options: 

 Not to service the publisher and to return an error message. This is unlikely since the 
rendezvous agent has already accepted the publisher request. 

 To hold the path information returned from the ITF itself and provide the publisher with 
a separate path to the topology agent (which of course can be distributed throughout 
the network for scaling and path efficiency) 

 To provide some or all of the path information to the publisher so that it can operate its 
own forwarding.  

It should be noted that even if a publisher interacted with the rendezvous systems and ITF 
directly, it may still nominate a topology agent to hold forwarding path information on its 
behalf. 

Once a forwarding path is established, we also need to consider how the path reacts to 
subscriber churn and mobility. Changes to subscriber information (in terms of destination 
networks) will arrive via the rendezvous systems to the publisher or rendezvous agent. These 
parties can then re-contact the ITF to request that the inter-domain path is updated. Changes 
to the path information are then sent by the ITF to the topology agent of the publisher. 

If a topology agent holds forwarding path information, then we must also consider the 
retention of forwarding information. One mechanism would be for the publisher to express how 
long it requires the forwarding path (in terms of time or number of packets). The topology 
agent will grant the publisher an initial allowance and may then require additional refresh 
handshakes with the publisher to ensure that the forwarding state is still required. 

If a publisher is mobile, the link provided to the topology agent may be updated without 
changing the rest of the forwarding information held by the topology agent. If the publisher 
roams too far, then the inter-domain path information may be transferred to another topology 
agent. Ultimately, the publisher can initiate a new request if it moves between networks. 

3.1.3.2 Example Operation2 

1. The publisher sends its intent to publish to the rendezvous agent in the forwarding 
network (ISP) it is attached to. This request may be passed along a chain of such 
rendezvous agents until it reaches one trusted by the rendezvous system to which the 
request refers. This request contains the publisher’s preferences/policies for both the 
rendezvous and the ITF functions. 

2. The rendezvous system adds subscriber information to the request and returns the 
message to the trusted rendezvous agent nearest to the publisher. 

                                                 
2 Note that although the terms ‘send’ and ‘receive’ are used in the example below, these actually consist of a 

previous subscription from the receiver and a subsequent publication. 
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3. The rendezvous agent(s) pass the request to the ITF. 

4. The ITF adds route information to the message and returns it to the topology agent. 

5. The topology agent makes the final route decision. It constructs a forwarding path from 
the publisher to the topology agent and returns it to the publisher. 

3.2 The Problem of Un-Subscription 
In the PSIRP architecture as presented in D2.3, the rendezvous and forwarding functions are 
cleanly separated and may be operated by different business organisations. This offers 
advantages, such as being able to operate very efficient forwarding paths, but presents the 
complication that subscriptions and un-subscriptions are sent via the rendezvous function and 
are not visible or enforceable by the forwarding networks. While a publisher may legitimately 
decline to serve information in response to a subscription, it is not permissible that a publisher 
ignores an un-subscription request and continues to bombard the subscriber. 

In this section, we investigate the problem further and look at architectural alternatives (and 
complementary approaches) to the problem of un-subscription. 

3.2.1 Components in the Problem Space of Un-subscription 

3.2.1.1 Rendezvous 

The rendezvous function is responsible for registering subscriptions and providing attachment 
network information to the Inter-Domain Topology Formation (potentially via the publisher or 
publisher attachment network). As such the rendezvous function does not have information 
about the forwarding topology or the link identifiers that are used in the construction of the 
forwarding label (zFilter). Such information is shared by the forwarding networks with the 
topology manager for each domain, while inter-domain links are shared with one or more ITF 
operators. 

3.2.1.2 Forwarding 

The forwarding network is responsible for forwarding publications across its network to 
subscribers attached to it. When a publisher has already interacted with the Topology 
Manager, this process is as simple as matching the zFilter against outgoing link identifiers. In 
this mode, the forwarding elements have no knowledge of subscribers, but are merely 
forwarding traffic along a pre-calculated multicast tree. 

Where traffic is arriving from another network, it is likely that the ITF does not have an intimate 
knowledge of the subscriber’s attachment network. Therefore, finer-grained subscriber 
location information is required in order to perform the intra-domain forwarding. In order to 
perform this operation it is clear that the forwarding network needs to reference a local 
rendezvous function for subscribers attached to it. This does not preclude the use of additional 
foreign rendezvous providers to which the subscriber also register its subscriptions. The local 
rendezvous function will operate in conjunction with the local Topology Manager to construct 
the intra-domain forwarding tree. Such local subscriber location and/or the constructed intra-
domain path are likely to be cached to improve the transmission performance of later packets. 

The operation for a local publisher to obtain a forwarding path zFilter may be identical to that 
for inter-domain traffic. However, it may also vary since the publisher is on hand to negotiate 
forwarding route preferences and operate some of the path selection algorithm. Whereas a 
remote publisher forwarding across multiple domains may only have knowledge of the inter-
domain path, a local subscriber may have knowledge of the intra domain path to local 
subscribers. 
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3.2.2 The Problem of Un-subscribing 

If a subscriber chooses not to receive further information, it may unsubscribe from the 
information identifier. Like the subscription, this request is sent to one or more rendezvous 
providers, presumably including a local rendezvous function for the attachment network. Once 
the subscription state is removed from the rendezvous system, new publishers will not be able 
to acquire forwarding trees to these ex-subscribers. 

The problem is simply that previous publishers may still have valid forwarding paths. This may 
be because they hold a valid zFilter, or because such forwarding state is still maintained in the 
network after the un-subscription (for example a cached intra-domain forwarding path for inter-
domain traffic). This may result in a situation where the subscriber receives information in 
which it is no longer interested. Obviously, the situation can be exploited by malicious 
publishers for denial-of-service attacks or other types of abuse. 

3.2.3 Approaches to Un-subscription 

There are a number of potential approaches to ensuring that the subscriber is not subject to 
information overload or abuse (much) beyond the un-subscription. 

3.2.3.1 Time-Limited Publisher Capabilities 

The network may grant the ability to send traffic into the network for a limited time period. After 
the period expires, the publisher (or other network function) must reference the rendezvous 
system to check that the subscription is still valid before extending the right to publish. These 
capabilities may be checked at the network edge, but can also be integrated into the Packet 
Level Authentication scheme and checked at multiple enforcement points in the network. This 
approach is shown in Figure 3.15. 

 

Figure 3.15: Rendezvous Network trusts Forwarding Network 

The problem with this approach is that the time window may not be sufficiently small to protect 
the interests of the subscriber or sufficiently large to operate an efficient network. It is 
therefore desirable to complement a publisher capability approach with an immediate 
subscriber-side protection mechanism. 

3.2.3.2 Time-Limited Network State 

If forwarding state is held within the network (such as an intra-domain multicast path to 
subscribers), then this state must be refreshed at a minimal interval. This will apply, for 
example, to cached intra-domain forwarding tree information for inter-domain traffic as shown 
in Figure 3.16. It will also apply to network held inter-domain paths (for example, where the 
publisher is not trusted to hold or operate the inter-domain path selection). 
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Figure 3.16: Rendezvous and Topology State Cached in Final Forwarding Network 

The problems are the same as for time-limited publisher capabilities, except the result may still 
be that traffic is forwarded into the network before being dropped. At first it seems that this 
approach does not offer any benefit beyond the time-limited publisher capabilities. It should, 
however, be remembered that the local forwarding network is likely to have an immediate 
relationship with the subscriber and act on their behalf (as a direct customer). Limiting 
publisher capabilities closer to the publisher (such as at the publisher ISP) requires a chain of 
trust between the subscriber and publisher networks. We should also bear in mind that 
network state retention will have to be managed. Thus such a solution will have to be 
implemented for network state scalability. 

3.2.3.3 Time-Limited Forwarding Identifiers 

A slightly different solution is to change the Forwarding or Link identifiers used in the network 
at set (but not necessarily the same or synchronised) intervals. This will invalidate any 
forwarding path state held by either the publisher or by the network elements. These parties 
will then need to re-apply for a new forwarding path, which will not include any ex-subscribers. 
This approach may also be desirable to prevent attacks on the network that attempt to 
calculate the network topology and link identifiers. 

One problem of operating this approach alone is that applications will need to detect packet 
loss before requesting a new forwarding path. This is wasteful in terms of network usage and 
may not be tolerable to certain applications. Thus it is likely to be combined with some sort of 
edge or publisher timer mechanism to request new forwarding paths before the old one 
becomes obsolete. 

3.2.3.4 Triggered Un-subscription (Rendezvous) 

The un-subscription request may be propagated through the rendezvous systems to those 
parties that requested subscriber information. These un-subscription notices need only be 
conveyed when the last subscriber leaves a location (for example a local broadcast network, 
or an attachment network for the inter-domain requests). 

Trusted network components (such as a topology agent in the publisher’s attachment network 
or the intra-domain routing agent for traffic arriving from inter-domain) will respect the ‘cease 
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and desist’ notice and recalculate the forwarding path. In most cases the publisher itself 
cannot be relied upon to behave appropriately when receiving an un-subscription request. 
Thus, as discussed in the section on Inter-Domain Topology Formation, a trusted agent can 
be used to hold the forwarding path state and refresh this as required by un-subscription 
requests. This is shown in Figure 3.17. 

 

Figure 3.17: Use of Trusted Agent 

Regardless of other mechanisms, un-subscription requests should always be sent to the 
rendezvous function in order to ensure that new publishers do not receive stale subscriber 
information (or that information is received in previous locations for mobile subscribers). In 
addition, subscriber information should be 'timed out' from the rendezvous system to protect 
rendezvous state since subscribers cannot always be relied upon to unsubscribe. 

Problems include the holding of valid network forwarding state by untrusted parties (such as 
the publisher) and the delay in propagating the un-subscription notice through the rendezvous 
function. 

3.2.3.5 Triggered Un-subscription (Forwarding) 

Due to the delay in propagating an un-subscription request through the rendezvous system, 
we can consider that this should be combined with an un-subscription request sent to the 
forwarding network. This may result in either the Forwarding Identifier of a link changing (and 
hence traffic being dropped before reaching the subscriber) or the installation of a temporary 
block on a forwarding identifier (until such time as one of the other mechanisms described 
above takes over) as shown in Figure 3.18. 

 

Figure 3.18: Un-subscription Request back into Forwarding Network 
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The advantage of this scheme is that it is immediate, although it may result in traffic being sent 
into the network that is later dropped (if there are no other live subscribers in that area of the 
network). In the next section we discuss how this may be achieved in more detail. 

3.2.4 Unsubscribing Using a Reverse Forwarding Path 

When a subscriber chooses to no longer receive information it will unsubscribe using the 
rendezvous identifier (and scope identifier) to the rendezvous function. This function should 
encompass all rendezvous systems, which previously held the subscription registration and 
should include a local rendezvous system for the local attachment network. This de-
registration from the rendezvous function is required to ensure that new publishers do not 
include the ex-subscriber in their path formation. 

At the same time the subscriber informs the local forwarding node (e.g. the attachment point) 
of their instruction to unsubscribe. This assumes that the unsubscribing host is not multi-
homed, in which case the hosts should wait for a publication packet to arrive in order to 
identify to which attachment forwarding node to send the un-subscription request (although it 
is possible to flood the un-subscription request to forwarding nodes that may never see a 
publication). The local forwarding node cannot simply change the forwarding identifier used by 
the subscriber since other subscribers may also be present (in a broadcast network). In 
addition the same forwarding identifier may also be used for different items of information that 
the subscriber still wishes to receive. 

Ideally, the forwarding identifier would become obsolete and the remaining subscriptions (for 
either the ex-subscriber or other hosts) would be transferred to different forwarding identifiers. 
However, since this would involve co-ordinating publishers and/or network forwarding state 
(e.g., in topology managers) this would not be any more efficient than the un-subscription via 
the rendezvous system. As a local (forwarding network) solution that can react more quickly to 
unsubscribe requests, we can consider that traffic is bridged locally to new forwarding 
identifiers or that information blocks are installed into the forwarding network. 

If the final link is a broadcast network, there is no advantage in changing the forwarding 
identifier if other subscribers remain, since the ex-subscriber may gain the same benefits by 
not listening to the broadcast. However, if no other subscribers remain, or the host has a 
dedicated link, then changing the forwarding identifier will stop unwanted traffic from arriving at 
the host interface. In order to achieve this, the attachment forwarding node may be 
subscription aware, managing a tally of current subscribers against rendezvous identifiers. 

Instead of storing subscription state, an alternative would be to allow subscribers to co-
ordinate. Thus a subscriber who sends an unsubscribe message to the forwarding node may 
be overruled by another subscriber asserting that the broadcast forwarding identifier should 
still be maintained. This would avoid the requirement for subscription state in the forwarding 
elements, although it may cause problems for subscribers that have a poor or intermittent 
edge connection. Once it is determined that no other subscriber sharing the forwarding 
identifier is receiving information for the rendezvous identifier, then the forwarding identifier 
may be removed. If any subscribers are using the same forwarding identifier for other items of 
information (via different rendezvous identifiers) then they must be informed of a new 
forwarding identifier set to listen for their remaining subscriptions. 

To do so, the edge forwarding node may replace the forwarding identifier and re-attach the 
subscribers to this new identifier. It must then direct all traffic not for the unsubscribed 
rendezvous identifier, but with a zFilter matching the original forwarding identifier over the new 
forwarding identifier. 

A largely equivalent technique would simply be to leave the forwarding identifier but to install a 
block for traffic bearing the unsubscribed rendezvous identifier. One problem is that this block 
cannot be propagated into the network beyond the point where other continuing subscribers 
exist. Another problem is that new subscriptions would also need to be propagated into the 
network in order to remove the block (or move it to the point where it only applies to the 
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unsubscribed party). Where the block may be propagated along a reverse path created by 
received packets, there is no way for a new subscription to be propagated, other than to flood 
the network (to a determined number of hops) since the new subscription may not be entering 
the network at a point where it is known that there is an upstream block. 

As an alternative to using the rendezvous identifier to block traffic we can also consider a 
partial un-subscription where the zFilter is used as the blocking pattern. In this case, the 
subscriber is electing to unsubscribe from information sent from a particular network path 
instead of information mapped to a rendezvous identifier. Although this seems interesting at 
first (e.g., as a way of mitigating against denial-of-service attacks), it is worth noting that for 
inter-domain traffic the zFilter may be identical for multiple publishers attached to the same 
ISP (if the inter-domain routing is visible) or even for all traffic arriving on the local forwarding 
network at the same peering point (if the inter-domain path is removed at the final domain). 
This approach still shares the same problems of how to ensure that such blocks do not affect 
other (current and future) subscribers. 

Any blocks or redirects have to be maintained until either a subscriber (re)joins the 
rendezvous identifier, or until a time window elapses. This window should be sufficiently long 
so that it can support one of the other un-subscription mechanisms discussed earlier. 

Blocking unsubscribed traffic at the edge of the network, although beneficial to the 
unsubscribed host, does not benefit the forwarding network. Ideally the traffic would be pruned 
as close to the publisher as possible. Thus, un-subscription notices may be propagated 
backwards into the network. The problem is that this cannot be performed (without wasteful 
flooding) until publications arrive, since there is no knowledge in the network of where 
publications about a particular rendezvous identifier may originate. When a publication arrives 
at an edge forwarding node (or end host) which currently has an un-subscription block in 
place (for all matching forwarding identifiers in the zFilter), the node may propagate the un-
subscription request back into the network. Each forwarding node along the reverse path must 
check to see if it has other potential subscribers and only propagate the un-subscription 
request further if it has received un-subscription requests from all forwarding branches that 
match the zFilter. Since new subscriptions must be flooded the blocks should only be 
propagated in a predetermined number of hops. 

3.2.4.1 Using composable and RId dependent FIds 

In-packet Bloom filters (iBF) can be used to create the following two properties for forwarding 
identifiers:  

1. The forwarding identifiers can be expressed as unicast paths and the source can combine 
those into a single (or multiple) multicast tree(s) by bitwise ORing them together. 

2. The forwarding identifier may be tied to a particular rendezvous identifier for a specified 
time period.  

The latter is accomplished by each forwarding element having a periodically changing key that 
is used, in combination with the RId, to compute the identifiers used to making local 
forwarding decisions. The identifiers can be created in such a way that there is a return 
channel on the forwarding path, which the receivers can use to replenish the subscription. 
This approach reduces the scope of rendezvous into a facilitator for initiating communications 
between publisher and subscriber. The rendezvous itself does not need to maintain state for 
on-going communications. 

The composability of FIds ensures that the subscribers do not depend on each other, and the 
use of in-packet Bloom filters means that no publication/subscription related state is required 
in the forwarding elements. However, in the face of a denial of service attacker, the un-
subscription may either take some time (for the forwarding elements to change their keys), or 
a helper function in the network will be needed. The purpose of the trusted network based 
helper function would be to gather the subscriptions and perform the composition. Then, it 
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would forward the composition concatenated with a set of zero's and encrypted to the 
publisher. Hence, once the helper function receives an unsubscribe request, it can remove the 
receiver from the composition before forwarding the new forwarding id to the publisher. 

3.2.5 Discussion 

The PSIRP network should always operate un-subscription via the rendezvous system since 
the purpose of the rendezvous system is to maintain rendezvous state. However, this alone is 
not sufficient since (a) the publisher may not be trusted to cease activity and (b) the latency 
may be unsuitable for some applications. The use of either time-limited publisher capabilities 
or time limited network state or forwarding identifiers is an effective remedy against (a). The 
use of time-limited publisher capabilities can be combined with the Packet-Level 
Authentication work and the security framework already reported in D2.4. This approach also 
stops the publication as early as possible without consuming network resources. Changing the 
forwarding identifiers provides a second line of defence and prevents targeted network attacks 
that require knowledge of the forwarding identifier topology while network state will have to be 
time-limited to avoid state scalability problems. 

A simpler solution would always be to ensure that a trusted part of the network will respond to 
the un-subscription through the rendezvous system. This may result in the immediate re-
creation of the local network forwarding path. In addition, we have already described in the 
section on ITF operation how local agents within the forwarding network may increase the 
level of trust in publisher operations. Such a topology agent can also be employed to reliably 
react to un-subscription requests. 

The reverse forwarding path un-subscription request, described above, can be used as a 
short-term mechanism to provide low latency un-subscription response. It does not provide a 
complete solution since to do so would require the propagation of un-subscription requests 
through the network to the publisher and the maintenance of long-term (un)subscription state 
in the forwarding network. Even in this case it cannot prevent the first packet arriving from the 
publisher. Although we have discussed that it is not feasible to propagate information blocks 
very far into the network, this may not be such a drawback if the density of the remaining 
subscribers is high. 

3.2.6 Unresolved Weaknesses 

Even if all the mechanisms above are operated, there remains a limited opportunity to perform 
attacks. Distributed Denial-of-Service attacks may still overwhelm the ability of an end-host to 
unsubscribe. Although each separate attack stream may be quenched (if the host has the 
capacity to do so fast enough) the un-subscription blocks may not be carried deep enough 
into the network to provide uncongested routes for legitimate traffic. This is particularly a 
problem if other nearby hosts fail to react to the attack and are therefore still considered to be 
valid subscribers. Another concern is that any security mechanism is itself a means for attack. 
Thus, attackers posing as subscribers may attempt to overload the un-subscription 
mechanisms by selectively subscribing/unsubscribing and causing cascades of control 
messages through the network. Indeed, bogus subscribers may send unsubscribe 
notifications to the forwarding network since it has no direct knowledge of authorised 
subscriptions (although it has authorised attachment) in an attempt to overwhelm the edge 
forwarding node with un-subscription state. A malicious publisher acting in concert can then 
target nodes deeper into the network. Adding subscription validity checks would detract from 
the low latency operation of the forwarding network un-subscription mechanism and only 
provide an alternative opportunity for attacks. 

3.3 zFormation 
The zFilters are vulnerable to replay attacks, in which an attacker uses a given zFilter for 
traffic it was not meant for. Second, it is also possible to perform a correlation attack by 
combining knowledge from several zFilters to compute information about link identifiers. This 
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will enable an attacker to guess at least a partial path to a target it has not been authorized to 
send to. Finally, an attacker may be able to inject traffic to an existing zFilter if he can guess 
(or compute) a zFilter that leads to the path described by the zFilter. 

To solve the abovementioned problems, Bloom filters can also be built using dynamic link 
identifiers or edge pair labels [Est09]. Instead of using a static forwarding table, which 
indicates the LIT for a given outgoing link, the router has a local secret key K and an 
enumeration of its neighbours. It uses these to compute an edge pair label with a function Z(K, 
#in, #out, F) where F is information from the packet, e.g., RId, and Z a secure cryptographic 
function that is fast to compute (e.g., a spreading hash function). The dynamic computation of 
link identifiers makes it possible to have secure forwarding identifiers that depend on the RId 
on the packet. Hence, a node cannot use a given FId, RId pair for sending packets with some 
other RId. Additionally, both incoming (#in) and outgoing link (#out) are used for computing 
the edge-pair label. This makes it more difficult for the attacker to perform an injection attack. 

This approach still leaves a slight possibility for combining existing zFilters that describe 
crossing paths, assuming that the attacker is capable of getting zFilters with a chosen F (e.g. 
between attacking nodes). This can be prevented, if each router performs a secure bit 
permutation on the zFilter of every packet it forwards. The bit permutation needs to depend on 
F and local secret key to prevent an attacker from using a correlation attack to gain 
information on the permutations used. The effect of using bit permutations is to prevent an 
attacker from combining zFilters that have a different root in the network. 

3.4 Identifiers 
In this section, we address two issues related to identifiers in the context of the PSIRP 
architecture. The first relates to general design considerations for identifiers while the second 
focuses on the specific usage of so-called algorithmic identifiers [PSI09]. 

3.4.1 Design Considerations for Identifiers 

While there is possibly a longer list of design considerations for identifiers, the following 
section focuses on two crucial considerations, namely those for long-term as well as variable-
length identifiers. 

3.4.1.1 Long-term Identifiers 

Using rendezvous and scope identifiers with the P:L structure (similar to DONA, see also 
[PSI10]) as long-term identifiers is problematic, since the security mechanism implementation 
is coupled with the identifier itself in the form of a public key that can be compromised or lost. 

The probability of key leakage can be reduced with delegation. In that case, the master key, 
which is part of the identifier, is stored offline and delegated keys are used for the actual 
communication. Security may also be improved by storing cryptographic keys into a secure 
separate hardware store inside the node. Therefore, even if the node is compromised, the 
attacker could not read the corresponding private key. 

However, the abovementioned solutions are not completely sound, and therefore they are not 
suitable for applications that use the network level identifiers as the sole identity of a 
persistent entity. For example, in a distributed application, the identifier may be scattered in 
multiple systems and changing the identifier may become unmanageable. One solution is to 
use the application identifier as a long-term identifier, and treat SIds and RIds as more or less 
temporary network level secure identifiers. Even if the RId is changed, a resolution service 
with an orthogonal security mechanism (such as manually configured trust hierarchy) would 
resolve the application identifier to another RId. This is analogous to using DNS names 
instead of IP addresses as a way to permanently refer to the servers in the current Internet. 
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3.4.1.2 Variable-length Identifiers 

In PSIRP, RId and SId form the identification means for the narrow "waist" of the architecture 
and they are used by all functions of the system to identify publications and scopes. Because 
the basic identifiers are fixed in length, it is not possible to encode arbitrary semantic 
information in them. In some cases, when the structure of the information is known 
beforehand, it is possible to use algorithmic ids (AlgIds) to generate the RIds on the subscriber 
side, but in general, variable-length identifiers are needed. Of course, it would be possible to 
implement the functionality of variable-length identifiers using only fixed length identifiers, but 
this would require additional message exchanges, adding a round-trip time to the latency and 
giving up the possibility of locality (using caching), which is unsuitable for some interactive 
applications. 

For example, a map application could embed GPS coordinates in a URL that names the 
content associated with the map coordinates. In such cases, the data is probably stored in a 
sparse data structure on the server side and generated on-the-fly based on requests. 
However, the application is still data-centric in nature and it is possible to cache the results in 
the network based on the hash of the identifier. The network does not need to interpret the 
identifiers and the end-to-end principle is adhered to, but the full variable-length identifier must 
still be contained in the subscription and rendezvous messages so that the data source and 
scope home can construct the data based on the embedded information. Note that it is not 
enough to just store the hash of the identifier, as it is not possible to decode the semantic 
information back from the hash on the publisher side. In payload messages, the RIds can 
simply be replaced with short hashes. 

It should be possible to have multiple naming schemas for application level identifiers (AIds), 
which are then mapped to RIds/SIds by some external means based on different application 
requirements. Some of these identifier types can have variable-length names for content. 
Therefore, we could specify an extended RId label that can be optionally included in the 
payload of rendezvous and subscription messages and is used to identify the data together 
with the RId contained in the message header. 

3.4.2 Update on Algorithmic Identifiers 

3.4.2.1 Identifiers  

The PSIRP architecture is information agnostic – information may have explicit or implicit 
relationships, defined on any number of levels including application, end user, transport and 
ontologies [PSI09]. As such, it would be useful to be able to relate this information either 
explicitly or implicitly, to which there are two technical approaches - relationship tags and 
AlgID’s.  

3.4.2.1.1 Algorithmic Identifiers (AlgId’s) and Relationship tags 

The term algorithmic identifier (or AlgId) refers to identifiers or graphs of identifiers that can be 
created through automated algorithms. End hosts could use the same algorithms to generate 
other related identifiers to enable, e.g., information subscription.   

Relationship tags are used to describe tags applied to the packet header (or payload) to form 
relationships between two seemingly unrelated identifiers, and may or may not be sufficient to 
produce other related identifiers.  Given that relationship tags can be thought of as a subset of 
AlgIds (in terms of functionality), this document will focus only on the design and 
implementation of AlgIds. 

Figure 3.19 illustrates the abstraction available through the use of identifiers, enabling the 
user to choose the most appropriate form. 

Figure 3.20 gives an example instantiation of Figure 3.19, showing that either the algorithm 
alone, the place to find the algorithm, or an algorithm to find the place to find the algorithm can 
be transmitted. 
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Figure 3.19: AlgId hierarchy 

 

 
Figure 3.20:  An example instantiation of the AlgId hierarchy with algorithms 

 

Taking the general case as illustrated in Figure 3.19, algorithmic identifiers are generated 
using a function, which takes inputs (which could include a RId or other parameters) and 
outputs a Rid. It is therefore the use of an algorithm, which is the key differentiator between 
AlgIds and relationship tags. 

3.4.2.1.2 Usage within PSIRP  

As outlined in PSIRP D2.4, there is a wide range of potential network uses for algorithmic 
identifiers. 

Subscription Management 

In network architectures such as PSIRP, the subscriber selects and subscribes to individual 
identifiers. As these identifiers should ideally be uniformly distributed throughout the identifier 
space to avoid routing hotspots, PSIRP provides scopes (denoted as SIds, see [PSI09]) within 
which the individual information identifiers (RIds) are published. We can envision that there 
are several alternative semantics for publishing and subscribing to identifiers structured in a 
hierarchy (it is important to note that these semantics do not reflect particular semantics at 
certain interfaces, such as on the service level, but publishing actions throughout various 
levels of our architecture). Publishing to a (non-leaf) identifier within the hierarchy can result in 
three actions:  

(1) The information is sent over the network on the specified identifier. No function is used to 
generate additional AlgIds for the publisher. 

(2) The information is sent over all identifiers that are reachable in the hierarchy from the 
specified identifier (including the specified identifier). A function can be used to derive the 
subordinate AlgIds. 

(3) The information is sent over all identifiers that are (common) antecedents in the tree 
(including the specified identifier(s)). A function can be used to derive the antecedent 

Similarly, subscription to an identifier can result in:  

(1) Subscription to information carried over the network on that identifier. 
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(2) Subscription to information on (that identifier or) any descendent identifiers in the 
hierarchy. 

(3) Subscription to (information on the identifier(s) or) any (common) antecedent identifiers in 
the hierarchy. 

 
If all options are available, an application of algorithmic identifiers must take care to match the 
publication and subscription semantics. For example, choosing the second option for both the 
publisher and the subscriber would result in the information being delivered multiple times 
over different identifiers. 

Forwarding State Aggregation 

Similar to subscription aggregation, algorithmic identifiers may also perform a role in the 
forwarding function. In such networks, links, waypoints or intermediate networks may be given 
identifiers that are used to control the forwarding of information. This concept is less useful in 
overlay identifier-routed networks where traffic is forwarded via the rendezvous point, but is 
applicable to networks with a separate forwarding path specification. Since the PSIRP network 
architecture separates a (fast) forwarding path from the (slow) rendezvous path, such 
techniques are applicable here. PSIRP specifies forwarding links using forwarding identifiers 
(FIds, see [PSI09]). Thus, we can consider that these can be either algorithmically generated 
or aggregated into longer path identifiers.  For security reasons, the FIds within the PSIRP 
forwarding network are volatile as subscribers remove their interest in information. Thus, 
functions can also be provided to determine how such FIds are cycled. Trusted publishers, or 
topology formation components, may use secret parameters to AlgId functions in order to be 
able to determine how the forwarding identifiers change over time. 

Caching 

To perform effective caching, we must identify useful chunks of information. For example, it is 
probably of little use to collect a few frames of video without the associated meta-information, 
or at least it may be more useful to retain complete frames than frame deltas in the case a 
cache needs to perform selective dropping. The cache therefore needs to be able to identify a 
complete useful set of information to be cached. This could be achieved if such a set were 
identified by an identifier and the cache was aware of how many related identifiers were 
children of such a set identifier. For example, an instruction could be sent along with an item 
of information that the identifiers of related “siblings” in the useful set are generated using a 
sequence number 1...N, a function f, and a set identifier S. 

Coding 

It is possible that the same information can be sent over the network using different 
encodings. Such encodings may be lossless, preserving the original information, or may 
transform the information (e.g., compaction to different video bitrates). Such encodings may 
be identified automatically by generating AlgIds. An application that wishes to adapt its bitrate, 
would therefore be able to automatically generate the AlgId of the required encoding and 
subscribe to this new information feed. Alternatively, mobility to a different device with a 
different screen size or audio capabilities might also result in subscription to a different 
encoding. This approach would also work for layered video, where each layer would be 
identified with an AlgId produced from the original information identifier. 

Return Path 

Many applications may wish to operate in a client-server mode. One communication pattern 
for implementing such a client-server relationship over a natively publish-subscribe paradigm 
(such as provided by PSIRP) is for the server to subscribe to an identifier to receive requests 
for information. To return the response, the client also needs to subscribe to an identifier. The 
identifier used for this return path may be automatically generated as an AlgId. Thus, a 
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request-reply transport layer operating over a publish-subscribe network might automatically 
subscribe to the reply AlgId before sending the request on the original identifier. 

Flow Control 

AlgIds could also be used to perform flow control. A simple example is that the information 
could be sent at different rates using different AlgIds. Alternatively, an AlgId derived from the 
content delivery identifier could be used for signalling information to control the sender rate 
(like TCP). Any application wishing to adapt the rate for a particular identifier would send 
requests to the AlgId automatically. 

Content Fragmentation 

Fragments of content (such as BitTorrent pieces) may be sent by using AlgIds. Any 
application wishing to receive a complete item of information can generate and subscribe to 
the identifiers for each fragment, instead of requiring that these are explicitly listed in content 
meta-data. Such fragmentation can also be structured semantically – e.g., voice, video, 
biography, trailer etc. 

Sequence Numbering 

Any application wishing to produce a sequence of information items may use AlgIds for each 
item in the sequence produced from a sequence identifier. For example, the temperature 
reading from a sensor may be identified by a single identifier. Each separate reading is then 
allocated an automatically generated AlgId. Any application wishing to follow the sequence 
must adapt its subscription ready to receive the next item in the series. This allows previous 
items to be repeated without burdening applications that have already received them. 

Error Control and Reliability 

Similarly to flow control, an AlgId can be automatically generated for any application that 
wishes to receive network delivery errors associated with another information identifier. Other 
AlgIds may then be used for the retransmission of information. Using an AlgId for error 
correction allows a sending application to retransmit information without burdening multicast 
listeners who received the information correctly. Separate AlgIds may also be generated to 
transmit logs of the information that is being sent over other identifiers so that applications can 
detect missing deliveries. 

Announcements 

Prior to sending information, announcements may be sent over corresponding AlgIds. These 
announcement channels may carry announcements for a variety of other identifiers. Thus, an 
application can subscribe to a few announcement AlgIds, covering its broad information 
interests. When an announcement is received, they can then join the correct rendezvous 
identifier to receive the information, reducing the average subscription state in the network 
and allowing receivers to pick and choose which information they receive over a rendezvous 
identifier. 

3.4.2.2 Design Choices 

In this section, we examine some of the questions along with the resulting options available 
for designing an AlgId scheme: 

 Which AlgId scheme could the publisher use? 

o Which class of function should be used? 

 Where will any AlgId relationship testing take place? 

o Will there be enough information provided in the packet for this, or will it be 
stored externally? 

 How and when will this AlgId scheme be communicated to the subscriber? 
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3.4.2.2.1 Choice of class of AlgId function 

When designing an AlgId scheme, there are four classes of functions available for the 
publisher to choose between, based upon the requirements of the scheme for the information 
being published.  

Identifier generated from a single parent 

 
Figure 3.21: Identifier generated from a single parent (one-way function) 

 
The first class includes one-way functions (e.g., hash functions) that generate identifiers from 
a single parent. While this limits the generation of identifiers to descendents only, in some 
situations this would be seen as a benefit as it would restrict the linking of parents to children 
only to those who knew both the parent and child identifiers in addition to the algorithm and 
any secret keys used. 

Identifier generated from a single parent using a reversible function 

 
Figure 3.22: Identifier generated from a single parent (reversible function) 

 
The second class of functions takes a single parent and uses a reversible function, for 
example a block cipher (when input parameters are also known). This enables the generation 
(and insertion) of both descendents and antecedents, offering the most flexibility to the user of 
the scheme.  

Identifier generated from multiple parents using a one-way function 

 
Figure 3.23: Identifier generated from multiple parents 

 

This third class of function takes multiple parents to generate a child identifier using a one-way 
function, for example a bloom filter. A result of applying an algorithm from this class is that 
information is lost. As a result, it is imposssible to generate the parent identifier using the child 
identifier. Whilst the child may be able to surmise a potential set of parents and an even larger 
set of antecedents, this will make this class of function unsuitable for some scenarios where 
accurately generating parent identifier(s) is a required attribute. Additionally, once an identifier 
has been created, no new antecedents may be added to the graph. 
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Identifier generate from multiple parents (reversible) 

The fourth class of function takes multiple parents to generate a child, however by using a 
reversible function and storing function data along with every identifier, the parent identifiers 
can always be generated given that of the child. An example usage of this could be for news 
feeds where a topic can belong under multiple categories. 

 
Figure 3.24: Identifier generated from multiple parents using a reversible function 

 
As each class of functions has different attributes which may or may not be applicable for 
certain uses, the choice of class of function is one best left to the publisher. 

3.4.2.2.2 Relationships 

Given that identifiers are usually expressed using a generalised graph model, there are a 
handful of mathematical relationships, which we may want to be able to test: 

 Reachability: Are two information items part of a larger data item? 

 Parent/Child: Direct reachability (non-transitive). 

 Ordering: Which is the antecedent and which the descendent (particularly useful for 
fragmentation and sequencing)? 

 Range test: Given three identifiers does one lie in the middle of the other two (useful 
for subscription ranges)? 

 Common antecedent/parent: Given two identifiers, are they related in a larger graph? 
This would not necessarily require knowledge of the antecedent. 

 Edge ordering: If multiple children are produced from a node either using the same or 
different functions, can we apply ordering precedent to the functions and thus produce 
a complete ordering? 

 Prevent linkability: Given two identifiers, we may want to prevent testing of the 
relationship without a third (or more) node(s). For example, to test for a common 
antecedent, the user would have to have knowledge of the antecedent itself. 

 
Relationship Testing and Communication 

Given the relationships above, there are several associated roles, which we may wish to be 
performed within the network; relationship testing, relationship generation, AlgId source and 
AlgId client. 

A relationship testing role would be used to evaluate relationship tests and return a true or 
false answer, unlike relationship generation, whereby the service would be expected to return 
a RId or other information. The AlgId source and AlgId client will be explored in more depth in 
the next section. 

Information structure (Relationship) communication 

Depending on the role performed, the question of how to transmit the publication information 
structure remains: should information be transmitted along with every RId, should the 
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information be available as a bulk download under a separate RId, or should it only be 
available through a relationship testing or generation service? 

If the information structure was transmitted in every frame (making each RId descriptive of its 
location within the overall structure), fields, which the publisher may wish to include, 
depending on the algorithm, include: 

 A Root flag 

 A Leaf flag (i.e., do not continue to generate descendent identifiers) 

 Branching order 

 Total number of branches off parent (child count) 

 Depth (could be inferred by generating path back to the root identifier) 

If the information structure was available as a bulk download, this could be available under a 
separate RId, which may be transmitted in the first frame, in every frame or in a selection of 
frames. 

Lastly, a service could be provided to enable others to submit relationship test or generation 
requests, abstracting the complexity of this task to a potentially more capable node. 

Relationship testing and generation location 

Having explored how the information structure can be transmitted, there are three places in 
which the testing and generation could take place: 

 The local node wishing to find out the relationship (usually the subscriber, but may be 
an intermediate node on the forwarding path, such as an opportunistic cache) 

 The publisher 

 A third party, such as a specific relationship testing service 

Option 1 – the local node 

As the local node will usually (but not always) be the subscriber, it should either already have 
the algorithm to generate related identifiers, or possess an RId from which the algorithm could 
be retrieved. In the latter case, this information may have been included in the first packet or a 
subsequent packet depending on the used communication scheme (discussed in the next 
section). 

Given that the relationship data will be available at the local node, any relationship testing or 
relationship generation would be performed locally, preventing the node from making frivolous 
tests as this would only impact the local node’s resources. 

Option 2 – the publisher 

Whilst being the most obvious choice, given that the publisher would have full knowledge of 
any relationships between identifiers (including any secrets required by the algorithm), this 
could result in misuse depending on the type of service offered. 

The most computationally intensive service would be to offer relationship generation, in which 
users could, for example, send requests over a separate RId with a request similar to 
getParent(childRId). This would therefore be a prime target for a DoS attack. 

To somewhat mitigate this effect, a relationship testing service could be offered, in which the 
requests would have to provide the expected answer and the service would only have to 
return true or false, for example testIsParent(expected_parentRId, childRId). 

If the publisher provided a relationship testing service over a special RId over which test 
requests could be sent using a specific payload format.  

Option 3 – A third party 
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Rather than requiring the publisher to handle relationship test requests, this could be 
“outsourced” to a helper function residing within the network, and as such would allow multiple 
different services to operate, potentially with different restrictions on use (public/private/paid 
for). This requires that the third party has a full copy of the publication information structure, or 
has some knowledge of the identifiers used, the function itself and any secrets required for its 
use. While offering the advantage that the publisher would not have to expose another 
potential means of attack, it would result in having to share this information with a third party. 

There are two types of helper function, which could be present in the network: 

 an AlgId generating helper, which could pass AlgIds back to the subscriber or 
perform the relationship tests. 

 a Value added helper, which could, for example, generate identifiers (and test 
relationships as required) and then perform some action. For subscription 
management, this could be hiding the complexity of the data being addressed via 
separate RIds by performing the RId resolution and subscription locally so that the end 
subscriber only sees a stream of data. 

Suitability 

Given the options, the choice of location and information structure communication for 
relationship testing depends largely on the data being transmitted and thus on which and how 
often the relationships need to be tested.  

Some of the factors influencing this decision are as follows: 

 Frequency and type of relationship look-ups 

 Free space within packet headers/payload 

 Spare network capacity 

 Sensitivity of information relationships 

 Complexity of information relationships 

If on one hand the subscriber or an intermediate party will only rarely require relationship 
testing, then, rather than including this information in every packet, it would be wise to require 
the subscriber to request this information separately from a third party for every relationship 
they wish to test, as illustrated in Figure 3.25.  

1) Helper publishes intention to receive requests for relationship information 

1) Subscriber subscribes to receive data relating to its relationship request 

2) Helper replies with relationship information 

 
Figure 3.25: Third party relationship testing using a helper function 
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Conversely, if the subscriber requires frequent relationship testing, then storing this data as 
close to the subscriber is beneficial, either by transmitting it in every packet (Figure 3.26), or 
providing the information available as a bulk download, via its own RId (Figure 3.27).  

 
Figure 3.26: Enabling local node relationship testing by adding in-frame relationship 

information 
 

 
Figure 3.27: Bulk relationship structure information download 

 
Figure 3.26 also illustrates that the content publisher does not have to be the AlgId publisher, 
as the subscriber first subscribes to RIdA, which includes a link to the location of the algorithm 
to find the relationship data, RId B. Upon subscribing to RId B, the AlgId scheme is transferred 
in the payload along with the parameters to generate the RId, RId C of the location for the 
relationship data. Lastly, the subscriber subscribes to RId C to receive the relationship 
information. 

3.4.2.2.3 Schemas 

When using algorithmic identifiers, it is likely that no scheme (or class of generating function) 
will perfectly suit every situation. Therefore, enabling different schema would allow the user to 
tailor the algorithm to suit the particular task in hand. This flexibility could be achieved through 
the implementation of a generic AlgId framework, which defines common methods and 
properties. 

This framework could take any number of forms, including one of the following; 

 An X bit header field referring to standardised AlgId schemes, published at a centrally 
trusted repository, similar to how XML and HTML schema definitions are in the current 
Internet. Within this scheme, setting the field to all zeros could indicate no schema, 
while all ones indicate a custom schema being described in the payload. 
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 An AlgId schema reference RId which would allow any custom scheme from any 
location. This would present space issues (which could be solved in a number of ways) 
and numerous security issues.  

o Enable upload of custom schemas to one central repository, with the scheme 
reference being assigned a unique identifier.  An example of this, using the 
current Internet addressing scheme for clarity, would be 
http://schemaDB.org/custom/ref=#, where # is the XX bit unique identifier 

o The same as above, but using a short bit pattern prefix to enable the use of 
several different repositories. This could enable the use of a scope local 
repository. 

o Require that the schema URL to be no longer than XX bits. 

o Use a time-limited unique identifier from a pool and store the schema along the 
proposed route(s). 

Schema Communication 

Having decided upon a particular scheme, the question remains of how (and when) to 
communicate this scheme to the subscriber. The usual conversation between publisher and 
subscriber will result in the subscriber requesting information from a publisher given a RId. 
Assuming the RId is actually generated using an algorithm, and the subscriber is interested in 
this related information, there are a few possible ways to communicate the algorithm used: 

 In the first frame 

o In the header in a standardised field (such as a reference to a schema 
repository 

o In the payload with no other content (content begins from first algorithmically 
generated RId) 

o In the payload, at the start or end of the actual content to be communicated 

 In every frame 

o In the header in a standardised field (such as a reference to a schema 
repository 

o In the payload 

 In a separate frame under a different RId or via a helper function 

Figure 3.28, 3.29, and 3.30 illustrate how the schema could be stored under a different RId, 
which could either be the location of a helper function or the schema alone. 

 
Figure 3.28: Example header structure using a schema Id 
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Figure 3.29: Example header structure using a schema RId 

 
Figure 3.30: Example header structure using a repository Id and schema Id 

 
 

3.4.2.2.4 Packet Addressing 

When choosing which AlgId scheme to use and how to implement it, the granularity of RID 
addressing is also important. 

Every frame has its own RId  

When information is transmitted such that every frame (and frame fragment) has its own RId, 
the algorithm information must be transmitted within every fragment as it cannot be assumed 
that the subscriber has received any previous frames related to the currently subscribed RId in 
which the AlgId scheme is contained. 

Multiple frames share a single RId 

When information is transmitted over an RId in which every frame may not have its own RId, 
the issue of when and where to transmit the AlgId and relationship information becomes more 
complicated. This may occur when the application has no desire to be able to individually 
identify information frames – for example if an item of content is broken down for transport or if 
previous information frames become obsolete.  

 
Figure 3.31: Multiple frames sharing the same RId 

 
If the AlgId scheme was transmitted only in the first frame sent over the RId, subscribers 
joining the stream half way through publication would not receive this information. This leaves 
us with an open question of WHEN to transmit this information: 

 Transmit the AlgId scheme in every frame 

 Transmit the AlgId scheme in the first frame 

 Transmit the AlgId scheme in selected frames (analogous to video files having key 
frames and deltas) 

Another choice is whether to transmit this information combined with or independent from the 
content to be delivered. 
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Figure 3.32: AlgId scheme combined with the content to be delivered 

 
Figure 3.33: AlgId scheme separate from the content to be delivered 

Suitability 

Comparing the possible options, the choice primarily comes down to the space taken up for 
transmitting the AlgId scheme. 

If the scheme were to be transmitted in full, then choosing to deliver it in every frame would 
result in little space left for the actual content. Transmitting it in only the first frame sent over 
the RId could result in subscribers who join the stream half way through missing the scheme 
information, meaning that the subscriber would have to find another method to receive this 
information (for example waiting for the content to transmitted over the RId to loop back round, 
if transmitted in this way by the publisher). To mitigate the effect of joining the stream half way 
through, the publisher could transmit the schema periodically to ensure that those joining half 
way through do not have to wait too long for this information. Unfortunately, finding the 
balance between the time period to wait for schema re-transmission is likely to have to be 
tweaked on a per publication basis. 

If on the other hand the scheme was just an RId upon which the information was published, 
then all three options to transmit this information would be feasible, again based upon the 
amount of free space that would be left in each frame. 

Finally, there appears to be no clear advantage to delivering the scheme combined with the 
content or in separate frames, and as such this decision should be left up to the publisher.  
One permutation of transmitting the scheme combined with the content which would not be 
advisable would be to cut the full scheme into chunks and transmit this content over a number 
of frames – you would have to ensure the user received every fragment as otherwise the 
scheme would be incomplete. 

3.4.2.3 Use Case: Subscription Management 

In this section, we take the example of subscription management to elaborate upon the 
requirements and conclude with a potential implementation for an AlgId scheme. 

3.4.2.3.1 Choice of content delivery model 

Definition of terms: 
Publish: An operation at the network level which involves one party (namely a content 
publisher) to transmit (publish) data over a predefined RId to one or more subscribers 

Subscribe: An operation at the network level whereby a user subscribes to receive content 
published by a content publisher over a pre-defined RId. 

Content publisher: An entity which holds content and can make it available for others to 
request. 

3.4.2.3.2 Basic PSIRP approach 

The next diagram illustrates the PSIRP model for matching publishers and subscribers.  
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Figure 3.34: Basic PSIRP delivery model 

 
Step 1: The publisher, P1, fetches subscription information and registers to receive updates 
over a known RId belonging to the RVZ node 

Step 2: The subscriber, S1, subscribes to a chosen RId 

Step 3a: The publisher requests a forwarding path to S1 from the ITF. 

Step 3b: The ITF returns the forwarding path to P1. 

Step 4: The content publisher publishes the content C1 to S1 

With the basic PSIRP model, only one RId is exposed to the publisher and subscriber, 
although others are used internally, for example between the publisher P1 and the ITF. 

3.4.2.3.3 Document delivery over the basic PSIRP model 

 
Figure 3.35: Document delivery over the basic PSIRP model 

 
Step 1: The content client requests content C1 using RIda to the rendezvous system 
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Step 2: The content publisher makes available content C1 and advertises this to the 
rendezvous system (this availability can also be signalled before the content client requests 
the content in step 1). 

Step 3: The rendezvous system returns a list of network providers, which contain content 
providers for content C1 to the content client. 

Step 4a: The content client, CC1 requests forwarding paths to each of the network providers 
returned by the ITF system 

Step 4b: The ITF system returns the forwarding paths to CC1 

Step 5a: The content client sends out content provision requests over each of the forwarding 
paths to the various content providers of content C1, each containing a back channel id for the 
replies 

Step 5b: The content client subscribes to each of the back channel Ids (usually simultaneously 
or before the content provision requests are sent). 

Step 6: Using the back channel included in the content provision request, each content 
provider sends tenders with its own back channel Ids (to which it automatically subscribes). 

Step 7: The content client accepts one or more of the tenders and responds to the content 
providers(s) including new back channel Ids (to which it automatically subscribes) for the 
content to be delivered over. 

Step 8: The content provider(s) receive the tender acceptance for content C1 and publish the 
data as requested. 

Within this model, multiple RIds are exposed and used, particularly during the tendering 
phase. 

3.4.2.3.4 Document delivery over a specialised “Document Model” 

 
Figure 3.36: Document delivery over a specialised Document Model 

 

Step 1:  The subscriber S1 indicates its interest to request and sync content C1 to the 
rendezvous system. 

Step 2: The content publisher, P1, makes content C1 available and informs the rendezvous 
system. 
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Step 3: The rendezvous system matches the requests locally and chooses a publisher P1 
(from those it knows have made the content available) and registers S1’s interest to receive 
that content with P1. 

Step 4a: The content publisher, P1, having received the request from S1, requests a 
forwarding path from the ITF. 

Step 4b: The ITF returns the forwarding path to P1. 

Step 5: The content publisher, P1 publishes C1. 

 

This model provides a one-to-one mapping between content identifiers and rendezvous 
identifiers, making this model tightly coupled. While this model uses more than one RId 
internally, only the one RId (based upon the content being delivered) is visible to the publisher 
and subscriber during communication in steps 1, 2 and at the final hop of the forwarding 
network (as it would be visible under various other forwarding identifiers until the last hop) 

3.4.2.3.5 Comparison of document delivery models 

In the channel model, there is a two step process, with the subscriber first requesting 
information from all matching publishers directly (matched via the rendezvous system) and 
then the subscriber choosing which publisher to receive the information from. This allows the 
subscriber to take into account various social, economic, political, security and network 
parameters, such as number of hops, jitter, bandwidth speed, personal preference for 
publishers, cost to retrieve content, geographic boundaries crossed, and secured/encrypted 
links. 

By simply matching publish and subscribe requests, no technical or implementation 
restrictions are placed on the rendezvous system. 

In the document model, the rendezvous system would be expected to perform the matching of 
subscribers to a suitable publisher (assuming there is more than one source). While this would 
potentially mean a reduced volume of traffic between pub and sub (pub m msgs ->Rvz->1 
msg sub), it offloads the choice from the subscriber to the rendezvous node, which may or 
may not be desirable. 

While this document will not mandate a particular model to use for subscription management, 
any AlgId scheme constructed should support both delivery models. 

3.4.2.3.6 Requirements for an AlgId scheme  

Within subscription management, there are a few key requirements, which the AlgId scheme 
must enable a subscriber to fulfil: 

1. Calculate and subscribe to parent and children identifiers 

2. Calculate how many information items comprise the collection/graph 

The latter would be useful for subscribers to check they have received all of the information 
items in the graph. 

Choice of class of function 

While the choice of function should ultimately be left up to the publisher, given the 
requirements above, the function is most likely to belong to the “single parent reversible” 
category as the subscriber could independently generate parent identifiers. If however the 
subscriber has a means to start from or obtain the root Id then the function could feasibly be 
“single parent one-way”. This may be because the subscriber starts by receiving the root 
frame, or because a prior frame has a link (e.g., RId) to the root. The use of a single parent 
reversible function would also provide benefits to other related use-cases, such as 
fragmentation or caching, as third party nodes with knowledge of the AlgId scheme could 
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generate the identifiers of related frames to ensure that the complete or a useful collection of 
information fragments was retrieved. 

If delivering data using the basic PSIRP model, it is important to highlight that multiple AlgId 
schemes could be used during the delivery process, and in particular for generating the RIds 
for the request for tender channels. 

In addition, the publisher has the choice between using a direct calculation function or a 
stepwise function for algorithm generation. In a stepwise function the subscriber would need 
to receive intermediate frames in order to generate the entire AlgId tree.  If using a stepwise 
function, the subscriber would need to generate every intermediate ID in a path, for example 
between an Id at depth 10 and the root, which for larger trees (and non root identifiers) would 
become costly. Each frame would also have to indicate its position in the tree to enable the 
traversal. 

If using a direct function, the subscriber would either need to generate the root Id and then the 
desired Id (based on its graph position), or calculate the Id directly (again based on its graph 
position). 

Overall, while both stepwise and direct calculation functions are adequate, the latency 
introduced by a stepwise function having to work through a potentially large number of 
intermediate Ids makes the use of a direct calculation function preferred. 

AlgId schema communication 

Under the banner of subscription management, there are two extremes of content, which may 
be transmitted: short pieces of information addressed by only a few Ids (for example news 
tickers) and large bulk downloads addressed by many Ids. Regardless of the scheme used, 
having to include this in every frame would be a significant overhead in the latter case – by 
using some form of inheritance, which could be a one bit “use AlgId scheme referenced by 
parent”, this could be greatly reduced while providing only a minimal overhead increase in the 
former case. 

Relationships and relationship testing 

Requirements 1 and 2 above correlate to the relationships of parent/child and reachability, 
however the frequency of testing of each of these relationships will vary dramatically between 
publications. Therefore, it should be assumed that there could be a potentially large number of 
requests for testing both types of relationship, and thus several factors need to be considered:  

Static / Dynamic information graph 

The first factor the publisher needs to consider when choosing how to enable relationship 
testing is whether the information graph will be static (will not change over time) or dynamic (is 
likely to be extended/changed in the future). This is because in the latter case, the relationship 
information would have to be updated upon every change to the graph, and could result in the 
subscriber having stale knowledge of the information graph unless informed of every change. 

Location of relationship testing 

The second factor is the frequency and complexity of relationship testing required, and thus 
the location where this testing should take place. As information graph sizes will vary between 
publications (and thus frequency of relationship tests), any of the potential options outlined 
under the design choices section could be valid with one exception. When publishing dynamic 
information, it would be unwise to transmit relationship information in-packet to make the RIds 
self-describing of their relationships in the information graph, as it would require the subscriber 
to continuously check the validity of its internal information structure model (e.g., by 
maintaining all subscriptions to receive graph changes). Alternatives are to collect the 
relationship information together to reduce the amount of RIds that need continual 
subscription, or to signal changes in the graph from a reduced number of RIds (e.g., the root 
frame). 
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3.4.2.3.7 Implementation 

In this section, we illustrate how an AlgId scheme could fit with both document delivery models 
and conclude with four example AlgId scheme implementations. 

Subscription Initiation 

As any algorithm used for subscription management should support both document delivery 
models, it is worth illustrating what are the differences in requirements, if any. 

Taking Figure 3.37 as our example publication consisting of 6 fragments of content, each 
identified by a separate RId derived from an arbitrary AlgId scheme, it can be shown that after 
the tender request and accept phase, the document delivery is identical for both models. 

 
Figure 3.37: Example publication information structure 

 
Figure 3.38: Document delivery tree using the channel model 

 
Figure 3.39: Document delivery tree using the document model 
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Figure 3.40: Content provision using the channel model 

 
Following the steps required for subscribing to a document using the channel model (Figures 
3.38 and 3.40), the initial request for content is sent from the receiver to the rendezvous node 
over RId1, which is in turn forwarded as a tender request to all matching content publishers 
over RId2 and RId3 respectively. Within this request, RId4 is included as the back channel for 
all tender responses to be returned to the subscriber. Each content publisher responding to 
the tender request includes their own RId, RId 5 and 6 respectively for the subscriber to 
communicate their acceptance over. The subscriber, having received replies from both 
content providers chooses the first provider and sends an accept message over RId5, 
including the RId (RId7) of the channel to fulfil the content provision. The content provision 
then begins initially over RId7, and other RIds as described within the AlgId scheme 
communicated by the publisher. 

How to derive the tender/accept RIds  

If the publishers were to use an AlgId scheme to generate the tender and accept channels 
(and back channels), the algorithm would have to be transmitted along in the initial content 
provision request. Upon the content publishers receiving this message via the rendezvous 
node, the reply channel RId could be generated and the response could be sent to the 
subscriber. For the content provider, this would mean including in the reply the inputs to the 
algorithm used to generate the RId for their reply channel. Unfortunately, as every content 
provider (of which there could be a large number) must choose a different RId from every 
other content provider without being able to communicate with them, the range of valid inputs 
to the algorithm would have to be very large to reduce this possibility. As the number of bits 
required transmitting these values would likely approach the size of the RId which they 
reference, the benefit to using an algorithm for this stage of the subscription process fades. 
Finally, upon the subscriber receiving all of the content provision requests, it would too have to 
choose an input from a suitably large range for the content publisher to provide the content 
over, as this RId should be kept secret from the other unsuccessful content providers for 
security reasons.  
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In summary, using an algorithm to generate tender and accept channels would result in the 
overhead of: 

1. Transmitting the algorithm to every content provider 

2. Every content provider replying with an input parameter approaching the size of the 
RId itself 

3. The subscriber replying over the above channel with an accept message and the input 
parameters (which again approaches the size of an RId) for the RId to provision the 
content over  

As such, given the space and computational complexity of using an algorithm and AlgIds, it 
would be sensible to include the full RIds for each channel, and allow both the content 
provider and the subscriber to choose what these RIds should be themselves. 

Algorithm 

As the extra RIds required by the channel model for tender and accept requests will be 
chosen without the use of an algorithm, the requirements for the algorithm for deriving the 
AlgId sused to deliver the content are identical. Regarding relationship testing and generation, 
this will be performed at the local node using the in-frame information structure data. The 
AlgId scheme will be linked to via a RId, and where children use the same scheme as their 
parents, the one bit “user parent AlgId scheme” bit will be set. By using this one bit flag, the 
same usually required in the header for the AlgId scheme RId can be removed, increasing the 
available space for the payload. Additionally, there will be a parameter length field to indicate 
to the receiver how many bits following this field are used for AlgId input parameters, to enable 
a flexible and more efficient use of the frame (and again maximising the space for the 
payload). This frame format is illustrated in figures 3.41 and 3.42. 

 
Figure 3.41: Frame structure when AlgId scheme is not inherited from parents 

 
Figure 3.42: Frame structure when AlgId scheme is inherited from parents 

 
As the choice of the algorithm will ultimately lie with the publisher depending on the content to 
be delivered, below are four examples of how different types of algorithm could be 
implemented. 

Stepwise 

Using the AES 192 algorithm as an example, this could be used as a stepwise function by 
requiring that the previously generated RId in the path be used as an input: 

f(RIdn-1, key, child count, sibling number) = RIdn 
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Figure 3.43: Graphical representation of the AlgId generation process for a stepwise 

function 
To enable the subscriber to generate parent RIds, each frame would have to store the child 
count and sibling number of each node. 

 
Figure 3.44: Example frame structure for a stepwise function 

 
 
Direct 

Given that the primary difference between a direct and stepwise function is whether the root or 
the previous ID used as an input, the AES192 algorithm can be used again. While it was 
sufficient for the stepwise function to store child count and sibling number, using the algorithm 
as a direct function places the requirement that the exact nodes’ location must be stored in 
each frame.   

Under the heading of direct functions, there are two types of implementation – a single step or 
a recursive implementation. In both cases, it is assumed that the subscriber stores the (root) 
ID from the initial frame delivery. 

Exploring the recursive implementation first, taking a simple tree fragment as illustrated in 
Figure 3.45, the frame describing RID A will have to include a description of the entire tree. 
Depending on the type of tree, it would have to store varying amounts of information at every 
node: 

1. Complete and balanced – branching factor and depth. 

2. Balanced – branching factor, depth and pruning or growing information depending on 
how incomplete the tree was. 

3. None of the above – the entire tree description, for example 3.3_0.0, with n different 
delimiters to differentiate the n different levels. 
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Figure 3.45: Tree fragment to illustrate recursive direct function implementation 

 

If the quantity of information to be stored at each node became too large or difficult to 
describe, this would be stored to an external location and referenced within the frame. 

At the root node, A, the frame structure may look like Figure 3.46, likewise with B (Figure 3.47) 
and C (Figure 3.48). 

 
Figure 3.46: Frame structure at node A in Figure 3.45 

 
Figure 3.47: Frame structure at node B in Figure 3.45 

 
Figure 3.48: Frame structure at node C in Figure 3.45 

 
In order to generate a child RId, starting at the root node the AES192 algorithm would have to 
be applied twice; once to generate the intermediate RIdB and then again to generate and 
subscribe to RIdC. It’s important to note that the subscriber only has to generate the RId of the 
intermediate node, not retrieve its contents. 
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Figure 3.49: Graphical representation of the AlgId generation process for a recursive 

direct function 
 
Looking at the single step implementation, as every node can be reached in one step from the 
root, this means the tree can be represented as a single level tree (excluding the root) and 
thus the only relationships to physically exist are parent and child between the root and every 
other node. This means that all structure information is only meta information stored at every 
node. 

 
Figure 3.50: Tree fragment to illustrate single step direct function implementation 

 
At the root node, the frame structure could look like Figure 3.51, containing the structure of the 
entire tree in a similar manner to that of the recursive direct function implementation, 
assuming the tree is not simplified to a one level tree before publishing, and nodes B and C 
could look like Figure 3.52. 

 
Figure 3.51: Frame structure at node A in Figure 3.50 
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Figure 3.52: Frame structure at node B and C in Figure 3.50 

 
One-way 

Another example, this time using a one-way function would be to use the Tiger hash function 
(with a digest size of 192) and store the RId of the root node in the header.  The inclusion of 
the root RId, along with the number of children and sibling number at each node in the graph 
would allow the user to generate the entire tree. 

 
Figure 3.53: Example frame structure for a one-way function 

 
The main disadvantage of this scheme is that in order to generate the parent ID of a given 
node, the subscriber would have to generate ALL Ids from the root downwards until the child 
node was reached again, which for large trees would result in a significant number of 
operations. This inflexibility could be mitigated by including extra position information in each 
frame, decreasing however the payload size and ultimate efficiency of the transmission 
scheme. 

External 

 
Figure 3.54: Example frame structure for externally referenced structure information 

 
The final example is that of having the entire publication information structure published to an 
external RId, removing the need for the publisher to use any algorithm to generate the RIDs. 
By including this RId in every frame, the subscribers can download this information 
themselves to get the related RIds to which they may need to subscribe. 

Conclusion 

By examining the four potential implementations above, it is apparent that once location 
information needs to be stored at every frame, there is little difference between the stepwise, 
direct and one-way function. As the external implementation removes the need for location 
storage all together, it also removes the need for the use of an algorithm, turning the solution 
into a relationship tag example, which would offer significant in-frame space savings. 
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As a result of the example implementations above, no concrete recommendation can be made 
regarding which specific implementation to use, except that the choice of implementation 
should be left as a decision to be made by the publisher given the type of content to be 
published.  

3.5 Caching 
In the Internet, a large amount of content is transferred repeatedly. Most of the time, the 
content is retransmitted from the source to serve different requests coming across the 
network. The efforts to reduce the amount of repeated traffic in the current Internet can be 
roughly divided into two categories: application level caches, including web caches and 
Content Delivery Networks (CDNs), and application-independent caches, which can be often 
found in the so-called WAN optimization products. Today, these approaches together offer 
significant improvements to network performance by caching some of the content, but they all 
represent extra services on top of the actual network (overlays). In the PSIRP architecture, 
caching is considered one of the obvious pieces of functionality that a service provider or the 
network itself is well equipped to offer. 

At the lowest level of the PSIRP architecture, every piece of content is considered to be 
addressable. This means that even when information is fragmented to multiple chunks, each 
such chunk may possibly be identified with their own rendezvous identifiers (RId). Concepts 
like scoping and metadata can be used to determine how the chunks fits into larger data 
abstractions, such as documents or streams. In any case, addressing each chunk with a 
separate RId allows for considering each one of them as being cache-able and request-able. 

Retrieving information chunks from a cache requires subscribers to know the their RIds 
beforehand. In the present design choice, before the actual transfer of any data begins, the 
subscriber obtains a list of RIds that make up the object it desires – alternatively, such list of 
RIds may be computed algorithmically with approaches outlined in Section 3.4.2. It then 
requests each chunk (logically) separately; in practice, any node may optimistically push 
chunks whenever there is free capacity over its outgoing links. For this, the source constructs 
a meta-data object, containing the RIds of the individual chunks, and publishes it. If there is an 
update to an object, the source will update the meta-data object, republish it, triggering the 
subscriber(s) to get the new version, allowing it to construct the new version of the object, and 
even to republish it later. 

Forwarding nodes or other caching points in the network, can easily cache the chunks passing 
by, with different algorithms. They can then replay them from their own cache whenever 
necessary. This means that in the PSIRP architecture, even information with the granularity of 
single chunks is independently cache-able and retrievable in the network. 

3.5.1 Example Implementation 

One of the caching mechanisms developed consists of a single cache store per node 
servicing all network interfaces. The cache stores clones of all incoming information chunks. 
Duplicate entries are not stored. A cache item is considered old and removed if the time 
interval since the item was entered or last used exceeds a predetermined constant value. The 
cache retrieval functionality relies on the “subdatachunk” type of request (developed at IPP-
BAS), through which specific publication chunks can be requested, this request being sent 
through a reverse forwarding path. Upon receipt of such a request a caching node checks its 
cache for the requested content. Any chunks found are sent back to the requesting node and, 
if necessary, a modified “subdatachunk” request, including only the requested chunks that 
were not found in the cache, is forwarded towards the publisher along the reverse forwarding 
path. The process continues upstream until all requested chunks are delivered either by a 
caching node or by the publisher. Currently, only caching nodes along the path from 
subscriber to publisher are potential data sources, i.e., implementing an opportunistic caching 
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mechanism along the forwarding path from publisher to subscriber3. This leads to the following 
limitation (see Figure 3.55). 

 

Figure 3.55: Caching Operation 

If Sub1 subscribes to a publication, the publication data will be cached in N1 and N2. At some 
later time, before the cached data timeout is reached, Sub2 subscribes to the same 
publication. The entire publication will be delivered from the cache of N2 and the 'age' of the 
delivered cache items in N2 will be reset back to zero. Later on, the timeout interval will be 
reached for N1 and the publication data will be deleted. If at this point Sub3 subscribes to the 
same publication, the data will be fetched from the publisher even though it is still available 
two nodes away at N2. Data caching is implemented as a shared library written in C++ with a 
C interface described in detail in the 'Transport functionalities implemented in Blackhawk' 
section of Deliverable 3.5 - Final description of the implementation. 

3.6 Transport-level Congestion Control 
This section outlines the transport-level congestion control (TCC) mechanism that is currently 
realized within the PSIRP architecture. It resembles a flow-oriented congestion control 
mechanism, which can be publisher- or subscriber-controlled. 

3.6.1 TCC – publisher-controlled 

In this TCC version, the rate towards the congested area is controlled at the nodes which send 
publication data. Unlike in TCP where the communication is of an end-to-end type and the 
client notifies the server to reduce its sending rate, here the rate can also be modified at any 
intermediate node. In a PSIRP sense, these intermediate nodes act as (re-)publisher of the 
information items, hence the name “publisher controlled” (the term “network-assisted” is fitting, 
too, pointing to related work in this area). 

 

Figure 3.56: Publisher-controlled TCC 

Every node divides traffic into separate flows based on packet FIds and can trigger the TCC 
mechanism for a given flow if it receives an out of sequence data packet, indicating a packet 
loss in that flow4. An out of sequence packet should only trigger the mechanism at the first 
node it is detected. For this purpose, the first node that detects the loss marks the out of 
sequence packet. Once marked, the packet will not trigger the TCC mechanism at subsequent 
                                                 
3 It is important to realize that this solution relies on the notion of a reverse forwarding path, which has not formally 

been introduced in the PSIRP architecture yet. However, it underlines the potential importance for such 
solution. 

4 Several methods can be used to implement a sequencing mechanism, such as using algorithmic RIds or a 
relationship tagging mechanism (see Section 3.4.2). 
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nodes. A node that has reduced its sending rate due to congestion will receive data at a faster 
rate than its sending rate. In such conditions the data is buffered in the node's output queue. If 
the free buffer space gets low the node will signal the previous node, which in turn will reduce 
its sending rate and also start buffering data. A node communicates a congestion condition to 
the previous node via special choke packets. A choke packet is sent if either an unmarked out 
of sequence packet is received or the buffer space is getting low. 

 

Figure 3.57: Publisher-controlled TCC – rate control 

All nodes create a separate outgoing queue for each flow. This allows independent per flow 
rate control and avoids a situation where congestion along one route would undesirably affect 
the rate towards other uncongested destinations. All queues are processed in a round-robin 
fashion. The queue rate control is implemented as a token bucket filter. In addition all nodes 
have a single input queue where all incoming packets wait to be processed with the goal of 
using this queue as an indicator of node overload. When a node receives a choke packet for a 
particular flow, specified by the FId in the choke packet’s payload, it reduces the sending rate 
for that particular flow in a single step to a predetermined value. The rate then increases 
multiplicatively if no other choke packets concerning this particular flow are received. Since it 
takes time for a node to receive and react to the choke packet, a node detecting congestion 
will in general experience multiple packet losses and thus send multiple choke packets. In 
these conditions special care is taken at the choke receiver to react only to the first choke 
packet of a given series. The module is implemented as a shared library written in C++ with a 
C interface described in an upcoming technical report outlining the implementation in more 
detail. 

Remaining issues to be addressed: 

 It takes too long for the node receiving the choke to react and reduce the 
corresponding sending rate, which significantly degrades TCC efficiency.  

 Since nodes distinguish traffic flows based on FIds, in a situation where a subscriber 
subscribes to multiple publications from the same publisher, the data packets for the 
different publications would be part of the same data flow. For the purpose of traffic 
rate control this is sufficient, since a potential congestion would equally affect all data 
transfers between a particular publisher-subscriber pair. Lost packet detection however 
would not work due to the mixing of flow-sequence-numbers at the intermediate nodes 
(although assigning such sequence numbers through a common transport-level 
mechanism can prevent such mix-up). A possible solution would be for the 
intermediate nodes to use the meta-data to distinguish data packets with same source 
and destination but pertaining to different publications.  
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3.6.2 TCC - subscriber controlled 

In this TCC version, which is TCP-like type in the sense that the TCC mechanism is always 
triggered by the “client” (subscriber), the rate towards the congested area is controlled 
indirectly through the number of chunks the subscriber requests at a time. 

 

Figure 3.58: Subscriber-controlled TCC 

The publication is obtained with a series of data requests containing a subset of all data 
chunks. A “slow start” algorithm is implemented by the subscriber starting to request two 
chunks. If no packet loss is detected the number of requested chunks increases by a factor of 
two with every consecutive request. In case of a packet loss, the number of requested chunks 
is reduced according to the percentage of lost packets in the previous request. Every 
consecutive request is triggered by the receipt of the last packet of the previous request, 
which incurs a round-trip-time overhead in the overall publication reception time for every 
request, compared to an ideal case where all chunks are requested at once and there is no 
packet loss. Such overhead, however, could be reduced through interleaving traffic flows on 
the transport level. 

3.7 Rendezvous Security 
This section addresses two aspects of rendezvous security, namely securing the rendezvous 
process itself and providing rendezvous interconnection security.  

3.7.1 Securing the Rendezvous Process 

An approach for securing an upgraph-based rendezvous process is presented in [Lag10]. 
Here, we adapt this mechanism to the more general case within the PSIRP architecture. The 
solution aims to prevent denial-of-service (DoS) attacks against publishers, the subscribers 
and the rendezvous system, while being scalable. 

In the example solution, the rendezvous process operates as follows. The publisher sends a 
publish request to the rendezvous system. The subscriber also sends a subscription request 
for the publication. After matching the publication and subscription requests at the rendezvous 
point that serves the particular publication, a topology is formed in collaboration with the inter-
domain topology formation function (see Section 3.1 for design considerations for this 
function). Eventually, the publisher will receive an appropriate Fid to send its publication 
towards the subscriber(s). 

From a security point of view important questions include: whether the publisher can be 
trusted to serve the publication? Is a subscriber really at the network location? How to prevent 
DoS attacks against the subscriber? How to prevent DoS attacks against the publisher? 

The chosen security mechanism is based on the traditional certificate mechanism and control 
messages are protected by PLA. On the forwarding layer, zFilter and zFormation mechanism 
are used to provide protection against DoS attacks. 

In step 0, both the scope and publisher authorize themselves through certificates (C1 and C2). 
Mutual authorization is necessary, since without a C2 certificate a hostile scope could induce 
a load to the publisher by claiming that the publisher is willing to serve the publication. In step 
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1, the publisher sends a publish request to the rendezvous system. This request contains a 
certificate from the access network to the publisher (CY) along with certificates C1 and C2. In 
the next step (which could happen in advance of step 1), the subscriber sends a subscribe 
request to the rendezvous system along with the CX certificate that is given from the access 
network to the subscriber. In step 4, the topology formation process is initiated along with the 
necessary certificates. Finally, the publication is sent in step 5 along with the certificates. 

The main advantage of this approach is that the inter-domain topology formation process can 
independently verify the validity of the subscription request and drop invalid requests 
immediately, before they even reach the publisher5. This effectively protects publishers from 
DoS attacks. C1 and C2 certificates state that the publisher is willing to serve the publication 
as well as that it is trusted by the scope. CY and CX certificates provide information about the 
publisher's and the subscriber's topological location. Therefore, hostile parties are not able 
induce load on the target network by spoofing their location. 

Since publication and subscription messages utilize cryptographic identities and certificates, it 
is easy to limit the amount of allowed messages per time frame and per destination. This 
provides an additional protection, since a hostile subscriber cannot flood indefinitely valid 
subscription requests towards the same data source. Furthermore, by revoking or not 
renewing the CX and CY certificates a hostile node can be removed from the network. 

The abovementioned example can be easily extended to support access control for 
subscriptions. In that case the subscriber would authenticate with the scope, and receive an 
additional C3 certificate. This certificate would be included in the subscription message and 
therefore intermediate nodes are able to enforce access control by verifying the validity of the 
C3 certificate. 

The rendezvous security mechanism based on certificates and PLA is flexible, and would also 
work with other rendezvous solutions. 

3.7.2 Rendezvous Interconnect Security 

In the proposed global rendezvous system for PSIRP, presented in [PSI09], rendezvous 
networks are interconnected using a hierarchical Chord DHT [Gan04] implementation, which 
is responsible for storing global scope advertisements on behalf of the originating rendezvous 
nodes (RN). When a subscriber initiates a rendezvous and the publication cannot be found 
from the local rendezvous network, the subscription request is recursively routed using the 
Crescendo algorithm, with the modification that each message is actually a subscription 
operation on top of the routing layer as explained in [Vis09]. The results of the rendezvous 
operations can be cached in RNs and the interconnect nodes. Rendezvous interconnect 
operators are the organizations that provide the nodes for the interconnect architecture. 

The rendezvous interconnect sub-hierarchy owner controls each sub-hierarchy of the 
rendezvous interconnect (RI). Together these owners authorize RI nodes to join that part of 
the hierarchy of the overlay and provide them with an address range from the Chord ring. 

The availability of the rendezvous service is secured with the help of RI sub-hierarchy owners 
that act as trusted third parties authenticating RI nodes before they can join the DHT 
[Cas2002]. Each RI node is assigned an identifier range from the Chord ring using a 
temporary certificate signed by the RI sub-hierarchy owner in question. This prevents the Sybil 
attack [Dou2002] and the routing table poisoning attack. We assume that only a relatively 
small portion of the nodes is malicious, which makes replication an effective solution to 
availability. The locally optimized links in the DHT are based on the Canon hierarchy that is 
expected to loosely follow the underlying network topology. 

The scope owner authorizes a RN to host itself with a certificate, which prevents false scope 
advertisements in the RI. The Canon routing algorithm guarantees that the most local 
                                                 
5 It is important to keep in mind that the actual responsibility to drop malicious requests depends on the 

implementation of the ITF process, taking into account the design considerations in Section 3.1. 
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advertisement in the RI hierarchy is always found first. To avoid DDoS attacks against 
particular RI nodes, we utilize traffic admission control and forwarding limit at each node of the 
RI as presented in [Das05, p. 134]. This is possible because the SIds are uniformly hashed to 
the DHT nodes and honest traffic distribution should be roughly balanced when taking caching 
into account. As a result, the same subscriber may not continuously rendezvous with the Rids 
of the same scope and has the incentive to cache the results of the rendezvous operation. RI 
nodes also cache popular rendezvous results and store a subscription in the RI to monitor 
updates of the cached data. This makes popular data scalable without large investment in the 
home rendezvous networks (HRN) by the scope owner. The RI is further protected from 
attacks by the fact that it uses for communication the pub/sub model provided by the 
underlying routing and forwarding layers, which makes it difficult to circumvent the DHT 
topology. Access controlled scopes require the rendezvous message to reach a HRN trusted 
by the scope that can act as a policy enforcement point and encrypt the response with the 
public key of the subscriber. Popular access controlled scopes therefore require the 
rendezvous network to have capacity large enough to handle incoming subscriptions and 
possible DDoS subscription attacks by botnets. To address this, it is possible to replicate the 
scope implementation to multiple RNs. To avoid a RI node becoming a hotspot, it is possible 
to create multiple advertisements in the RI by adding salt values [Zha01] to the SId before 
hashing it to determine the RI node. 

On the rendezvous system level, we do not have to consider the tussle for good human-
readable names as the scope names are always relative to a namespace created by the 
public key of the SId. On the other hand, each scope advertisement consumes storage 
resources of the RI and a fair allocation should be enforced by the RI mechanism. This can be 
achieved, for example, with per-node quotas for each sub-hierarchy in the RI, which gives 
each sub-hierarchy the incentive to control resource usage of each of its clients. The quotas 
can be based on contracts between interconnect operators and their customers. 
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4 Major PSIRP Architecture Contributions 
In this section, we attempt to summarize the main PSIRP contributions on the architectural 
level. It is clear that these contributions cannot be seen (and would have not been made) 
without the significant contributions on the implementation and evaluation levels. However, we 
attempt to frame these contributions in an architectural context. 

4.1 From Principles to Invariants 
When starting the PSIRP project, it was seen as a crucial exercise to formulate design 
principles upon which we could build our work and the (architectural) outcome. This led to the 
formulation of four major PSIRP design principles [PSI09], in addition to general design 
principles that can be seen as crucial for many large-scale design efforts.  

Throughout our work, however, we came to formulate stronger invariants for information-
centric designs that follow these principles as well as the other ideas developed in the PSIRP 
project. In other words, rather than loosely outlining principles for a design, we are confident 
enough to outline invariants for ANY information-centric architecture akin to PSIRP. This is a 
strong architectural result that will need constant evaluation in the future. One of the goals of 
such an evaluation is to determine the validity of these invariants for a wider range of 
architectures beyond PSIRP. 

4.2 From Functions to Design Choices 
The information-centric starting point of the PSIRP project naturally led to the formulation of 
three crucial functions to be implemented, namely the finding of information, the construction 
of a delivery graph for the information, and the delivery of the information along this graph.  

Throughout the project, we have come to outline concrete design choices for these functions, 
not only implementing the functions themselves but also addressing related issues that come 
from their implementation, such as security considerations, considerations for identifier 
choices, and many more. This has created a wealth of information around these design 
choices from which implementation choices can be selected, evaluated, and tested. 

4.3 From Scoping to the Potential for a Rigorous Design Framework 
The concept of scoping [PSI09] quickly became a central theme in our architectural work and 
throughout the formulation of design choices for various architecture components. With the 
formulation of our architecture invariants, however, this concept has been extended towards a 
foundation for layering that not only addresses our vision of providing a mapping of social 
constructs and other relationship between information items onto a thin inter-networking layer 
[PSI08] but also provides the potential for a rigorous design framework under the inter-
networking layer. This layering concept in the context of scoping within implementation 
regions provides a region of consistency, which can be used for applying, e.g., optimization 
and control theory techniques that fully utilize the heterogeneous network resources that are 
likely to exist below the waist of the architecture. While the project has not addressed the 
nature of such a rigorous design framework, we firmly believe that our thinking around scoping 
and layering has paved the way for such a framework to be studied and applied. 

4.4 From a Vision to a Research Agenda 
PSIRP has been from the beginning a vision-led effort, driven by the firm belief of a few 
people that such a dramatic change of the inter-networking architecture would benefit the 
Future Internet in many ways. While this vision was based on some concrete ideas for its 
realization, only the execution of the project and the wealth of information that surrounds its 
execution have led us to sharpen our research agenda for the future. In other words, the 
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project and its partners with which it collaborates so successfully has been working towards 
concretizing the potential work in many areas through follow-on projects (such as the 
PURSUIT FP7 project which will start in September 2010), national projects (such as various 
ICT SHOK efforts in Finland) as well as international collaborations (such as through the 
current US NSF efforts in the Future Internet architecture funding round). Much of the work 
executed in these efforts is a direct result of the groundwork that PSIRP has laid in its efforts. 
Some examples for such a growing research agenda are congestion control and caching 
solutions, multi-path resource pooling, algorithmic identification, naming solutions, rendezvous 
solutions beyond global rendezvous, applicability of control and optimization theory, and many 
more. The formulation of this research agenda would have been impossible without the 
collaboration among the PSIRP project partners and the growing collaboration with external 
partners. 
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