

PSIRP

Publish-Subscribe Internet Routing Paradigm
FP7-INFSO-IST-216173

DELIVERABLE D2.5

Final Updated Architecture

Title of Contract: Publish-Subscribe Internet Routing Paradigm
Acronym: PSIRP
Contract Number: FP7-INFSO-IST 216173
Start date of the project: 1.1.2008
Duration 33 months, until 30.09.2010
Document Title: Final Updated Architecture
Date of preparation: 19.7.2010
Authors: Dirk Trossen (UCAM) (editor), Pekka Nikander (LMF),

Kari Visala (AALTO-HIIT), Trevor Burbridge (BT), Paul
Botham (BT), Chris Reason (BT), Mikko Sarela (LMF),
Dmitrij Lagutin (AALTO-HIIT), Ventzislav Koptchev (IPP-
BAS)

Responsible of the deliverable: Dirk Trossen (UCAM)

 Phone: +44 7918 711695

 Email: dirk.trossen@cl.cam.ac.uk

Reviewed by:

Dirk Trossen (UCAM), Trevor Burbridge (BT), Pekka
Nikander (LMF), Janne Riihijarvi (RWTH), Paul Botham
(BT), George Parisis (UCAM), George Xylomenos
(AUEB)

Target Dissemination Level: Public
Status of the Document: Completed
Version 1.0
Document location http://www.psirp.org/publications/
Project web site http://www.psirp.org/

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 2(65)

Table of Contents

1 Introduction ... 4

2 Architecture Invariants ... 5

2.1 Design Considerations ... 6
2.1.1 On Layering ... 6
2.1.2 On Separation of Functions .. 7

3 Update on Architecture Components ... 9

3.1 Inter-Domain Topology Formation ... 9
3.1.1 Design Considerations .. 9

3.1.1.1 Model Calibration .. 10
3.1.1.2 (Inter-domain) Routing Scenario .. 11
3.1.1.3 Privacy Scenario ... 13
3.1.1.4 Summary .. 14

3.1.2 Security Considerations .. 15
3.1.2.1 Information Issues .. 16
3.1.2.2 Security Issues ... 17
3.1.2.3 Design Patterns .. 19

3.1.3 Design Choices ... 22
3.1.3.1 Possible PSIRP Design Candidate ... 22
3.1.3.2 Example Operation ... 24

3.2 The Problem of Un-Subscription .. 25
3.2.1 Components in the Problem Space of Un-subscription .. 25

3.2.1.1 Rendezvous .. 25
3.2.1.2 Forwarding .. 25

3.2.2 The Problem of Un-subscribing ... 26
3.2.3 Approaches to Un-subscription ... 26

3.2.3.1 Time-Limited Publisher Capabilities ... 26
3.2.3.2 Time-Limited Network State ... 26
3.2.3.3 Time-Limited Forwarding Identifiers ... 27
3.2.3.4 Triggered Un-subscription (Rendezvous) ... 27
3.2.3.5 Triggered Un-subscription (Forwarding) ... 28

3.2.4 Unsubscribing Using a Reverse Forwarding Path .. 29
3.2.4.1 Using composable and RId dependent FIds .. 30

3.2.5 Discussion ... 31
3.2.6 Unresolved Weaknesses .. 31

3.3 zFormation ... 31
3.4 Identifiers ... 32

3.4.1 Design Considerations for Identifiers .. 32
3.4.1.1 Long-term Identifiers ... 32
3.4.1.2 Variable-length Identifiers ... 33

3.4.2 Update on Algorithmic Identifiers .. 33
3.4.2.1 Identifiers .. 33
3.4.2.2 Design Choices .. 36
3.4.2.3 Use Case: Subscription Management .. 44

3.5 Caching .. 56
3.5.1 Example Implementation ... 56

3.6 Transport-level Congestion Control ... 57
3.6.1 TCC – publisher-controlled ... 57

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 3(65)

3.6.2 TCC - subscriber controlled .. 59
3.7 Rendezvous Security ... 59

3.7.1 Securing the Rendezvous Process ... 59
3.7.2 Rendezvous Interconnect Security ... 60

4 Major PSIRP Architecture Contributions ... 62

4.1 From Principles to Invariants ... 62
4.2 From Functions to Design Choices .. 62
4.3 From Scoping to the Potential for a Rigorous Design Framework 62
4.4 From a Vision to a Research Agenda .. 62

5 References ... 64

This document has been produced in the context of the PSIRP Project. The PSIRP Project is part of the
European Community’s Seventh Framework Program for research and is as such funded by the
European Commission.

All information in this document is provided “as is” and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

For the avoidance of all doubts, the European Commission has no liability in respect of this document,
which is merely representing the authors view.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 4(65)

1 Introduction
The ambition of the PSIRP project is to define a new architectural waist for a Future Internet in
which information is at the very heart of the network’s operation. This new waist of an inter-
networking architecture is defined and specified through a series of deliverables that
addresses a variety of issues related to the project’s ambitions. These issues range from
design principles over design considerations to outlining design and implementation choices.
This produces a broad set of material that is considered to be helpful for the project as well as
for the wider community in order to further develop the basic ideas and concept of PSIRP into
a workable prototype of this Future Internet.

This document should be approached in this evolving work context. It is an update and
extension to ideas presented throughout the other documents of the project, most notably the
first and second architecture deliverable, D2.2 and D2.3 respectively. Hence, one should not
expect a final specification of our architecture that can be handed to a system engineer for
implementation. Instead, this document sharpens and continues our work in several key
areas. Firstly, we present a section that positions our previous work on design principles and
concepts in the context of defining invariants of our architecture, i.e., properties that we see as
inherent for any design choice based on our thinking. Secondly, we provide an update on
design considerations and choices for major components and areas in our architecture,
ranging from inter-domain functions over identifier considerations to security and transport
considerations. Last but not least, we summarize the key points that we see as the major
contributions of the project’s efforts in an attempt to set out an agenda for future work.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 5(65)

2 Architecture Invariants
In [PSI09], we outlined the design principles for developing the PSIRP architecture.
Throughout our work, these principles have laid the foundation for a set of invariants of our
architecture, i.e., properties that do not change throughout the implementation and execution
of said architecture. We believe that the formulation of such invariants is an important step in
our development since it constitutes an understanding as to what is fundamental not only for
the design of the architecture but also in its realization. Hence, while the principles focus on
the design, we now conclude that the following properties are fundamental to the actual
implementation of what we have designed so far.

Given that the PSIRP architecture provides a replacement for the IP waist in the current
Internet hourglass, we see the following invariants being provided at the waist level:

 The first invariant is that of flat label identifiers as being the means to identify
information items as the main entities of the architecture. An information item is
generally any collection of data that is relevant within a given application context. It can
represent a principal of a transaction, a policy rule acting on another piece of data, or a
pointer to some imaging data. In our new waist, each information item is identified
using a statistically unique flat label identifier. These identifiers are self-generated and
the associated semantic of the information is only known to the applications generating
the said identifiers. As an example, a video publisher might generate an identifier
through hashing a human-readable name of a video into a suitable identifier1.

 The second invariant is that of scoping as a means for hierarchically ordering
information along certain application structures. Each information item is placed in at
least one scope. There may be one or more global scopes, which make information
items reachable to anybody. A scope, therefore, becomes nothing more than a special
information item, holding other information items within an application-specific
structure. An example of a scope could be a set of pictures or a group of friends in a
social network.

 The third invariant is the service model of the waist, which consists of publishing of
and subscribing to individual information items within a scope. We argue that this
model is conceptually broader than traditional request-response service models that
are largely present in the current Internet although such models can be implemented
through, e.g., including identifiers for response information into the original request
publication with the client subscribing to the response identifiers and the server
publishing to it.

 The fourth invariant is that of providing functions for finding information, determining
a valid delivery graph, and forwarding information (packets) along that graph. It is to be
noted that these functions are often separated in implementation but they may also be
merged as a result of (often local) optimization.

Although the goal of our work is not to show the application of these invariants to ANY
information-centric architecture, we believe that a fundamental architectural discussion is
required around possible properties (and even invariants) of a set of architectures with goals
similar to those of PSIRP. We acknowledge and highly appreciate the contribution of John
Wroclawski (USC-ISI) and Karen Sollins (MIT CSAIL) to this discussion. The formulation of
the PSIRP invariants and the discussion of their potential central role as inherent properties of

1 Not an invariant but an important design tool is the notion of algorithmic identifiers. Here, a common algorithm is

utilized among a set of network elements to logically bind information items to a collection of items. Through
such a common algorithm, network elements can determine, for instance, parents or sibling relationships
among information items. Functions like error control, caching, sequencing and others can utilize these
mechanisms but upper layer applications can also effectively order the relations of items through such
algorithmic relations and utilize lower network functions for improved dissemination of such collections.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 6(65)

a certain class of information-centric architecture is a direct consequence of intensive and
ongoing discussion and collaboration with both of them.

2.1 Design Considerations
From our invariants outlined above, a set of design considerations follows that are directly
related to the invariants. More specific implementation and design considerations are
presented in Section 3.

2.1.1 On Layering

The invariant of utilizing labels and scoping for structuring information goes further than
attempting to provide application developers with a more natural way to access the network.
Together with the other invariants, it leads to a concept of layering that describes a new way
to build up a layered architecture – defining a new Internet hourglass.

Referring to Figure 2.1, the invariants of information items within scopes are utilized above the
waist to implement scopes of discourse through the composition of scopes. These composed
scopes can be used as constraints in the pub/sub operations that act upon a particular
information item. With this, we assert, concepts of context, scope of information reachability
and other social constructs can be implemented through recursively applying a scoping
operation.

For instance, a high-level service such as Facebook might constitute a very large scope,
exposed in the global scope(s) for universal reachability towards the members of Facebook.
This larger scope can be further constrained by individual group or friend scopes, eventually
limiting the reachability of the information items residing in these scopes of discourse. The
reachability of the information items to given sets of users, e.g., your friends on Facebook, can
be limited through realizing access control mechanisms for particular scopes. Hence, with this
set of constraining scopes, various communication patterns within social networking
applications can be implemented.

Figure 2.1: A New Hourglass

In another example, one can represent an organizational structure, in which a corporation is
reflected in the highest scope (within the organization) with further scopes being used to
constrain information to, e.g., business units, departments, groups, or individuals. It is likely

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 7(65)

that a resolution mechanism will exist for resolving human-readable concepts onto the scopes
of discourse and the labelling within each of these scopes.

At the level of the waist, a new API is exposed to the application developer. Proposals have
been made for such a new API, e.g., in [PSI09]. Common to these proposals is the higher
level of abstraction where individual information items are requested through a pub/sub-like
service model, following our third invariant outlined above.

While we utilize the scoping concept above the waist to implement social structures through a
composition of scopes of discourse, scoping is utilized below the waist, too, as scopes of
implementation. Here, the discourse is that of realizing the delivery of information across
actual transport networks. Scopes are utilized to define the boundaries for a functional model
of network functions that determine the dissemination strategy for the information items
residing within a particular scope. Hence, it provides a region of consistency to implement the
necessary functions for dissemination.

As stated in our fourth invariant, these major functions relate to the finding of information, the
formation of an appropriate delivery topology, and the final act of delivery along the formed
topology. As indicated in Figure 2.1, such boundaries can be thought of as node-internal
strategies, link-local strategies, strategies within single domains, or across domains. For
instance, the implementation of the information-centric protocol stack of a PSIRP node
provides a private, node-local scope for inter-process communication as well as scopes for
intra- and inter-domain network functions, utilized for local forwarding, topology management,
rendezvous and alike.

The techniques described in [Jok09] outline an intra-domain forwarding solution, which
effectively implements a series of overlapping link-local scopes within a single intra-domain
scope. In this case, the information is being disseminated as a series of packets transmitted
from a publisher (or domain ingress) node. This level of implementation is possibly several
“layers” under that of the application developer’s original publication since additional network
functions such as segmentation and error control can also be supported as separate scopes
of implementation. This effectively leads to extending a high-level API that is exposed towards
the application developer with functions for memory-like access, as outlined in [PSI09].

The lesson learned here is that having information as a common thread provides an appealing
layering concept where functions of information finding, topology formation and delivery
(forwarding) recursively appear throughout all layers. This enables a commonality in design
that can be utilized for developing a rigid design framework for an overall architecture. While
we can see examples for such layering in work such as [PSI09, Fot09], its benefits are still
open to evaluation. Only the development of a coherent design framework based on such
layering is likely to provide the insight needed for assessing the potential benefits of this
design.

2.1.2 On Separation of Functions

We stated above that the existence of functions for finding information, building a delivery
graph, and forwarding information along this graph is a crucial invariant of our architecture.
This brings up the issue of separating these functions or merging them for implementation
(and often optimization) reasons. It is vital to understand that this issue is important in the
nature of implementing a scalable information-centric architecture. The following example is
constructed to underline this point.

Let us think of a social networking very much akin to today’s solutions, like Facebook. A large-
scale social network such as Facebook is likely to be distributed all the over the world in terms
of publishers and subscribers. In other words, one can think of it as a social construct that is
unlikely to be locally constrained. We assume that there is at least one scope of discourse that
is hosting the information space of the social network.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 8(65)

There are now two options for implementation. First, let us consider one that is similar to
today's Facebook in which the identifier “facebook.com” points to a (set of) server(s) that
“host” the service Facebook. Hence, all publications to the Facebook scope are in fact
uploads, i.e., any subscription to a named data piece is in fact routed to the Facebook server
farm. In this case all information has in fact a location by virtue of the upload operation to a set
of dedicated servers, whether one wanted it or not.

Let us then consider another approach that builds on the power of storing the data at the
publisher or at any other node. In this case, the social network is represented by the grouping
through the discourse scope representing the social network. This is appealing to a company
like Facebook since it still allows control over the data by virtue of possible access control and
profiling of usage patterns while relieving Facebook from the burden of hosting the actual
data, and therefore reducing overall costs of their operations. Any entity that happens to have
a particular information item (such as a status update or photo) can provide the information to
the interested subscriber.

In this form of a social network, what would happen if functions of finding and delivery were
not separated? For that, we assume a similar operation as implemented in CCN [Jac09]. An
interest in a specific social network information item is broadcasted within a single domain with
one or more nodes replying with the requested information. If the content is not available in
the domain, a content router [Jac09] forwards the interest request to any domain that hosts
the information. When a content router receives an interest request, it broadcasts the request
locally in order to possibly retrieve the item. Hence, in this implementation, finding information
and routing along a delivery graph are folded into a single operation.

What does this mean for our scenario? In CCN terms, the discourse scope would be
represented by a single domain, say “facebook.com”, with content within that domain being
represented, e.g., as an XPath representation. Given the widespread geography of publishers
in our social network, this would require that almost ANY content router in ANY domain would
need information about 'facebook.com'. But what would this information be since there is no
single domain that hosts the data anymore, i.e., some facebook.com data is likely to exist in
ANY domain worldwide? As a result, ANY status update of ANY social network member is
likely to be spread over many, if not all, domains in the Internet! If we couple this with the local
broadcast of interest requests upon reception of such a request, the operation amounts to a
global flooding of status updates in any network that might hold viable information about this
social network.

What is the lesson to be learned here? It is that, if information is location-less (which is often
the case), finding the information needs to be separated from the construction of an
appropriate delivery graph, in order to optimize the operation of each of these functions. This
motivates the introduction of an explicit (global) rendezvous service in the PSIRP architecture
[PSI09]. However, it does not exclude solutions for (implementation) scopes in which functions
are merged for optimization reasons. The choices of implementing the functions (either
separated or optimally joined) is realized within the layering concept of Section 2.1.1 in which
such implementation scope provides a region of consistency for implementing the functions.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 9(65)

3 Update on Architecture Components
In this chapter, we present updates of the designs of various architectural components. These
include inter-domain functions and various problems that need to be tackled in operations as
well as design and security considerations for various components and operations. As
outlined in the introduction, this material should be read in the context of existing work that is
presented in the previous architecture deliverables D2.3 and D2.4.

3.1 Inter-Domain Topology Formation
Within the PSIRP architecture, the Inter-domain Topology Formation (ITF) function essentially
provides “high-quality” routes to customers, including both end-users and ISPs. The technical
challenge is then to optimally match the various and sometimes conflicting requirements this
implies. Ideally, we seek to guide ITF technical design choices with regard to wider socio-
economic factors including technology supply, market conditions, user concerns (e.g.
security/privacy) and regulatory actions.

In this section, we summarise our progress in this field. Firstly, Section 3.1.1 employs
modelling techniques to consider likely Internet evolution scenarios and identify any
consequences for ITF architectural design. Section 3.1.2 then emphasises the crucial
importance of ITF security/privacy considerations, considering a variety of security-related
design choices for implementing an ITF function within PSIRP. Lastly, Section 3.1.3 details
specific (preferred) options for ITF implementation and considers the likely consequences in
practice.

3.1.1 Design Considerations

In the current ITF context, we have identified four scenarios as particularly relevant:

 1. Finance: focus on the reliance on highly resilient links for financial transactions

 2. Technology: focus on a possible breakdown of technology cycles

 3. Routing: focus on possible routing choices

 4. Privacy: focus on possible backlash against privacy evading technologies

Details are discussed below but we note that the first two cases are relatively simple (serving
largely to calibrate and validate the models) while the remaining two scenarios are more
PSIRP-specific. To help understand the broader socio-economic issues, we employed a
socio-economic evaluation approach that is based on “Systems Dynamics” modelling and
simulation techniques. Previous work [PSI10] has described our general approach and
methodology, identifying key variables (“stocks”) and their dependencies (“flows”), as
summarised in Figure 3.1 below.

With regard to the model itself, the fundamental behaviour is a flow of technology solutions to
ITF providers, controlled by the regulator and subject to various feedback loops. The regulator
responds to user concerns and (typically) seeks to limit market growth to ensure reasonable
competition. PSIRP’s success will obviously be dependent on both perceived usefulness (i.e.,
market demand) and compatibility of technical design choices with the prevailing socio-
economic climate. Positive market feedback may be countered by negative regulatory
feedback, depending on the specific scenario.

The central role of the number of ITF providers is emphasised by its strong connectivity to
other variables in the model. In particular, industry/end-user concerns and the effect of hype
were assumed to be triggered by appropriate threshold parameter-values for the number of
ITF providers. A delay between regulatory decisions and actions was also introduced to
provide additional flexibility and realism. From a modelling perspective, the current trend

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 10(65)

towards collaborative regulation [Hui02] may also be captured by allowing parameters to
assume flexible values (in order to perform a “sensitivity analysis”).

Figure 3.1: ITF Stocks and Flows

For definiteness, as a “base case” for model calibration and validation, we assigned
parameter-values for the rate of both technology and market development, together with other
variables, as shown below.

Quantity Value Units

Technology development rate 30 solutions/year

Market development rate 20 providers/year

Threshold for industry/end-user
concerns

30
number of
providers

Threshold for hype 50
number of
providers

Regulatory delay 3 months

Table 3.1: Base Case Parameter-Values

3.1.1.1 Model Calibration

For Scenario 1, we envisaged a situation where the available capital investment changes
markedly over a 20-year timescale, expecting a differential impact on PSIRP take-up relative
to more conventional network offerings. In view of recent global economic upheavals,
fluctuations in the wider economy (e.g., telecom bubbles vs. global recession) could obviously
strongly affect PSIRP’s viability/success; this is particularly true for a new technology seeking
to establish a foothold against incumbent competitors. In terms of our model, we allowed
market development to oscillate from “boom to bust” over 5-year cycles and compared
behaviour with the base case.

As expected, results in Figure 3.2 demonstrate that the number of ITF providers is very
sensitive to such fluctuations, varying in sympathy with investment fluctuations due to a strong
feedback via hype to perceived usefulness. Our model suggests that the corresponding effect
on ITF solutions is much less marked. Varying investment only influences ITF solutions via
secondary feedback through end-user competition concerns to the regulator. At a deeper
level, this emphasises that judgements on how investment affects providers and solutions
(simultaneously) will be crucial to both modelling (where the coupling between such influences
must be parameterised) and ultimate PSIRP success/failure.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 11(65)

Figure 3.2: Finance Scenario

With regard to Scenario 2, both memory and processing limits might represent serious
technological causes for concern [Mey07] in rolling out any new technology. Historically,
Moore's Law tended to ensure technology scaled at rates surpassing the growth rate of
information but the Law (arguably) does not apply to building high-end routers; growth in
resources available to routers could eventually slow down and may even stop, while network
demand continues to grow. It seems intuitive that, as a new entrant, PSIRP will be particularly
vulnerable to any sustained technological slow-down. To explore likely consequences within
our model, we modified technology development to simulate a progressive breakdown of
Moore’s Law in 5-year discontinuous bursts, once again comparing with the base case.

Figure 3.3: Technology Scenario

Results in Figure 3.3 show a strong tendency for the number of ITF providers to rise
(exponentially), modulated by the periodic burstiness in technology flow. In our model,
decreasing the flow of ITF solutions lessens regulatory feedback control exercised over ITF
providers, which experience a surge in growth due to the investment stimulus. This
emphasises the critical interaction between positive market feedback and negative regulatory
feedback, as mentioned above. In a practical situation, it would be necessary for the regulator
to react more quickly to changing socio-economic conditions [Vai09].

Our experience with the Finance and Technology studies provides strong confidence that the
model successfully captures system behaviour in an intuitive fashion. We now consider the
more PSIRP-specific Routing and Privacy scenarios.

3.1.1.2 (Inter-domain) Routing Scenario

With regard to inter-domain routing and connectivity, PSIRP essentially offers the possibility
for providing high-quality (VPN-like) routes at a (premium) price through dedicated ITF

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 12(65)

providers. In this scenario, we investigate the trade-off between likely performance (e.g.,
delay) improvement [Quo07, Raj08] and price, to better understand the market for such
services and implications for ITF design decisions.

There is a general regulatory trend away from legalistic requirements towards more co-
operative regimes with shared/devolved responsibility. Previous modelling work [Vai09] has
tended to reflect this, focusing on how telecommunication regulation must become more
flexible in the face of potentially disruptive technology changes. Failure to do so will inevitably
compromise the delicate balance between regulatory control and innovation. From a provider
viewpoint, we also note the trend towards partial transit, paid peering and multi-homing, which
could significantly affect ITF design choices; similarly, net neutrality remains a hot topic with
potentially significant implications for network access regulation.

To study these effects within our model, we introduced an ITF advantage reflecting how
improved PSIRP performance would be expected to increase perceived usefulness of an ITF
service. In principle, the ITF advantage is itself dependent on many other factors, as depicted
in Figure 3.4. Apart from direct performance improvement, these might include user incentive
to interconnect and specific PSIRP architectural design choices.

Figure 3.4: Routing Stocks and Flows

For modelling purposes, we assumed an initial take-up as users became increasingly
prepared to pay more for better service, eventually levelling off and then terminating over a
more extended period as users gradually came to regard such improvements as “normal
service”. As shown in Figure 3.5, the number of ITF providers behaves qualitatively as in the
base case (Figure 3.2), first rising then falling back towards a regulatory plateau. However, in
the longer-term the market becomes increasingly sensitive to variations in ITF advantage with
less evidence of a stable plateau as ITF advantage falls towards zero. Once again, the critical
interaction is between positive market feedback and negative regulatory feedback, as already
emphasised in Technology Scenario 2.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 13(65)

Figure 3.5: Routing Scenario

3.1.1.3 Privacy Scenario

This scenario explores tradeoffs between the importance of the various user choices and
consequences for PSIRP ITF design decisions, such as the balance between source routing
and topology hiding (emphasising importance of pub/sub and ISP choice, respectively). In
particular, we investigated a situation where pub/sub choice was paramount due to customer
anger at a series of privacy lapses, leading to adverse ITF publicity and consequent user-
backlash.

In general, the dramatic increase in computing power, bandwidth and storage capacity has
radically increased the ability of organisations to collect, store and process personal data. This
is a potential cause for concern [Bro09]. On the one hand, new technologies like ubiquitous
computing, surveillance technologies, biometrics, behavioural advertising, or social networking
provide a hitherto unknown capability for eroding privacy. On the other hand, general social
and political fears of terrorism or organised crime may drive both public and private authorities
to make use of these possibilities. Overall, these developments are generally thought to pose
a serious challenge to existing privacy laws and principles. Cybercrime remains a major issue
for policymakers and law enforcement agencies. Besides problems with fraud, key concerns
include malware, spam and cyberwar attacks.

As an obvious privacy-related example, we might mention eHealth and telemedicine
applications. While the medical and economic benefits of integrated health information
systems may be substantial, the usual public policy concerns associated with large-scale
information systems apply. Given the extraordinary sensitivity of personal health data, special
attention must be given to issues of privacy and IT security. A key challenge will be to make
the best possible use of eHealth technologies for the benefit of the patient while complying
with local privacy and security regulations.

Within our model, the significance of design choices (PUB/SUB for our chosen scenario) is
measured by their compatibility with the current socio-economic situation. Once again, each
choice is itself dependent on many other factors, as shown in Figure 3.6 where PUB/SUB
choice will depend on a mix of user concerns for security and trust, access regulation and the
user-ISP tussle over routing control [Lak04].

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 14(65)

Figure 3.6: Privacy Stocks and Flows

In modelling such a scenario, we parameterised the pub/sub choice assuming a series of
major privacy/security incidents occurring every few years, each lasting several months. As
expected and shown in Figure 3.7, the number of ITF providers behaves similarly to the base
case. However, longer-term behaviour is heavily modulated by fluctuations in regulatory
pressures, caused by user-backlash. Our model suggests this is at least a 10-20% effect. If
regulatory effects were actually somewhat weaker than assumed here, market forces would
ultimately cause the number of ITF providers to rise exponentially, as observed in Technology
Scenario 2. Again, this emphasises the critical interaction between competing positive market
feedback and negative regulatory feedback.

Figure 3.7: Privacy Scenario

3.1.1.4 Summary

In light of the modelling and analysis carried out, the following broad conclusions may be
drawn:

 Our model successfully captures system behaviour in an intuitive fashion; in a typical
scenario (Figure 3.2 base case), the number of ITF providers initially rises and then
falls back towards a regulatory plateau.

 The market is very sensitive to investment fluctuations due to strong feedback via hype
to perceived usefulness; our model suggests that the corresponding effect on ITF
solutions is much less marked; more generally, judgements on how investment might

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 15(65)

affect both providers and solutions simultaneously will be crucial to PSIRP
success/failure.

 The competition between market and regulatory feedback is critical; our model
suggests this is at least a 10-20% effect (e.g., Privacy Scenario), underlining the
importance of tuning ITF architectural design choices to the prevailing socio-economic
situation.

 If regulatory effects were relatively weaker than assumed here, market forces
(reinforced by ITF advantage) would ultimately cause the number of ITF providers to
rise exponentially.

 Similarly, the regulator must be ready to react sufficiently rapidly to changing socio-
economic conditions (e.g., user-backlash)

The overall conclusion must be that the ideal ITF architectural design will represent a
compromise amongst all these influences, with particular emphasis on security/privacy
aspects. Accordingly, security considerations are discussed in more detail below.

3.1.2 Security Considerations

In previous deliverables, e.g., [PSI10], the role of the ITF, or Inter-Domain Topology Formation
function was explained. This function takes information about the location of subscribers,
together with network information and policies and preferences from different parties in order
to choose a forwarding path (or tree). What is not clear is how the ITF interacts with other
functions in the architecture. This section seeks to provide some preferable architecture
options based upon an analysis of the information involved and potential security concerns,
classified along the following dimensions:

 Initiator: The publisher interacts with the rendezvous function to obtain information
about subscribers (such as their attachment network). This information may be
returned to the publisher who then initiates the communication with the ITF.
Alternatively the rendezvous system may initiate the contact with the ITF on behalf of
the publisher. A final option is that the attachment network has an agent that
communicates with the ITF. Such an agent could be the local network rendezvous or
topology formation function, residing however within the same trust boundary as the
local forwarding network.

 Recipient: Although we would usually assume that the recipient of information from
the ITF might be the initiator of the forwarding path request, this may not be the case.
For example, even if the publisher communicates with the ITF, the forwarding path
may be returned only as far as the local forwarding network, with the remainder hidden
from the publisher. The publisher is then given a path only as far as the forwarding
network that holds the rest of the forwarding path information.

 Control point(s): Where is the forwarding path actually selected? At one extreme the
ITF may supply all relevant forwarding information leaving the choice and construction
of the forwarding path to other parties (such as the publisher). At the other extreme the
ITF will receive all concerns and policies and decide upon the best forwarding path.
Intermediate ITF solutions may provide a restricted range of forwarding information or
paths, leaving the final decision to another party (such as the publisher). In this case
the ITF trusts the publisher (or other party) with more information, but the publisher
may hide some of their concerns and eventual choices from the ITF.

 Level of client information: Different levels of information may be returned by the
ITF. Loosely we can consider that the ITF may return a single constructed path,
multiple paths, or a collection of path segments. In the latter two cases the publisher
(or other entity between the publisher and the ITF) is left to make the final path
decision (or even use multiple simultaneous paths).

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 16(65)

 Level of network information: It is not yet clear how end to end forwarding paths are
expressed. Options include each forwarding network sharing zFilter paths across their
network (that can then be aggregated to form an end-to-end path) or using virtual
paths for transition routes across forwarding network. Such virtual path identifiers can
then be replaced/supplemented by a local network zFilter. Other options may be to use
AS identifiers or finer-grained waypoints within the networks. The level of information
supplied by each forwarding network (via their internal topology management) to the
ITF determines what level of information may be supplied onward to the publisher or
other parties and may depend on the trust between the forwarding network and the
ITF.

3.1.2.1 Information Issues

We shall now briefly address the various issues that arise by passing information between
components of the architecture.

Information Passed to ITF from Forwarding Networks:

 Forwarding path information; this includes potential routes along with information about
resilience, QoS, congestion etc.

 Forwarding path policies; these policies reflect a bias or restriction on the use or
aggregation of the forwarding paths.

The forwarding network is assumed to have a trust relationship with the ITF provider that
allows the ITF to establish policy conformant paths on behalf of the forwarding network. The
ITF acts as a trusted point between multiple forwarding domains that are potentially
competitors (while having to work together to form an end-to-end path). The forwarding route
and policy information is competitive information and should not be shared with other
forwarding networks. If forwarding network information is passed beyond the ITF it is assumed
that the information will be de-sensitized (e.g. through aggregation or limited route choices) so
that this information is no longer commercially sensitive to other forwarding networks. Detailed
forwarding information can also potentially be used by the publishers to abuse or attack the
network.

Information Passed to ITF (originating) from the Rendezvous System

 Subscriber location; this location information needs to match the level of the forwarding
information; if the ITF is constructing routes between ASs, then the set of ASs covering
the subscribers needs to be known; alternatively a set of waypoints (nearest to the
subscribers) may be required instead.

The network locations of subscribers are confidential information between the subscriber and
the rendezvous system. However, the ITF does not require subscriber identities or even their
number within each forwarding network – only that some subscribers exist. Although this
desensitizes the subscriber information it is not necessary for any party other than those
exhibiting control over the forwarding path selection to have this information. Thus if the
publisher is not controlling the path selection, such information would ideally only be shared
with the ITF.

Subscribers may also have preferences and policies about how they want information to be
delivered. Since PSIRP is a subscriber driven architecture it is preferable to allow subscribers
to not only subscribe to information, but to have some say in how they want it delivered. This
is technically difficult since there may be many subscribers and meeting the interests of all
subscribers may not be in the interests of the system as a whole. For example, if different
subscribers were to select different Quality-of-Service classes, then should all subscribers
subsidise the high quality shared links nearer the publisher? Ultimately the issue is an
economic one, but it also means that such subscriber information has to be communicated to
the ITF to allow it to make the routing decision and facilitate accounting between the
forwarding networks.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 17(65)

Information Passed to ITF from the Publisher

This information will include publisher credentials (which can be matched to ITF or forwarding
network policies), along with the publisher’s own policies or preferences that affect the chosen
forwarding path(s). For example the publisher may request a specific QoS, or request multiple
redundant paths with specified isolation properties. The requests of the publisher will often be
confidential in terms of both the request and the path information passed back. Such
information can be used to analyse the network activities of the publisher (e.g., destination
networks, degree of multicast, subscriber churn, QoS preferences etc.).

Information Passed from the ITF

The ITF may propagate selected network path and policy information, or may pre-compute
partial or full paths. Such information can be used to route packets across the network. Paths
may be signed by the ITF stating that they conform to specific policies and are available only
to a single publisher. This can prevent unintended parties from using the path. Depending
upon the representation of the path, this information may also be used to derive network
topology and policies and also to isolate partial path information that could then be used to
form non-compliant paths. This latter misuse may be stopped by the lack of an ITF signature.

Partial path information may be subject to more abuses since it may be used to form non-
compliant paths. The ITF will be unable to sign the complete path unless conversations occur
between the controller (e.g., publisher) and the ITF. Furthermore, the more detailed the path
information, the more knowledge an attacker will gain about network topology, and the more
sensitive business policies will have to be shared beyond the ITF.

3.1.2.2 Security Issues

How the ITF communication is arranged depends largely upon two considerations:

 Who is trusted to see the various types of information?

 Who is trusted to make control decisions?

In choosing an ITF communication design, we are balancing the security requirements of
multiple parties. For example, the publisher may prefer to see all forwarding information and
make its own choices. However, the forwarding network will not trust the publisher with
detailed forwarding or policy information or to adhere to its business policies. Fortunately there
are a number of other actors (such as the ITF, rendezvous system or ISP/attachment network)
that may act as trusted intermediaries, hiding information from each party and making trusted
control decisions.

Forwarding Network – ITF – Publisher Tussle

Both the forwarding networks and the publishers have some trust relationship with the ITF.
The forwarding network trusts the ITF to establish policy conformant routes, yet protect the
forwarding network’s confidential information. The publisher also expects the ITF to establish
a best/fair route complying with its own preferences (which is true even if the ITF is hidden
behind, or encapsulated within, a forwarding network or rendezvous service). However, the
publisher may not trust the ITF with all of their preference information, seeking to make the
final forwarding decision itself. This will create a tussle between the publishers and the
forwarding networks, and it seems that the forwarding networks will hold the upper hand. The
ITF will have no business if the forwarding networks do not share information with it, and they
will not do so if their networks and businesses are compromised by the ITF sharing
information with unknown publishers. On the other hand, it seems that a large majority of
publishers will have little concern that the ITF, with whom they already have a certain level of
trust, has visibility over the forwarding preferences.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 18(65)

Figure 3.8: Tussles

This conflict is shown in Figure 3.8 as the ‘network data tussle’. In this diagram a single ITF is
shown interacting with a single publisher and subscriber. The rendezvous systems, for
simplicity, are shown as a single component. In a real system the rendezvous function would
be distributed and under the control of multiple rendezvous operators. The diagram also
shows a limited number of forwarding network functions, under the assumption that the
publisher and subscriber each have an ISP to which they perform network attachment. In
reality these parties may multi-home and also operate or participate in other local networks
with different degrees of trust to that of an ISP.

Perhaps a more compelling reason to share more fine-grained information with the publisher
is to allow a more scalable and dynamic forwarding selection without continual recourse to the
ITF.

Subscriber/Rendezvous – ITF – Publisher Tussle

Along with the tussle described above, there is a separate conflict involving the subscriber’s
information. This is shown as the ‘subscriber data tussle’ in Figure 3.8.

Ideally, subscriber information should not be shared with the publisher (or vice-versa) since a
pub/sub network should provide decoupling between these parties. A publisher should be able
to publish without knowing any details about the subscriber set, although a ‘quench’ control
may be used to prevent the publisher wasting network resources if no subscribers exist.

Subscribers must share subscription information with one or more rendezvous systems, and
also attach to one or more forwarding networks. It is likely that such a subscriber ISP network
will also operate a local rendezvous component in order to be able to perform intra-domain
routing and route inter-domain traffic to local subscribers.

At least summaries of subscriber locations (for example end network identifiers) must be
communicated to the ITF in order to construct a forwarding path. This implies that the chosen
ITF must be trusted by both the publisher (e.g. to provide a good forwarding path) and the
subscriber/rendezvous system (not to reveal or analyse subscriber location and behaviour).

Another question is how trusted other elements, such as the publisher or publisher attachment
network or ISP, may be to the subscriber (and rendezvous system on behalf of the
subscriber). Such elements may be involved in conveying information from the rendezvous
system to the ITF or may actually use such data (for example, if the publisher is involved in
route construction/selection).

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 19(65)

Although we have described the problem as the ‘subscriber data tussle’, we must also be
aware of the concerns of the publisher. For example, even if the publisher did not choose the
ITF it must trust it to hold confidential information on routing requests and provide routes
without any subversion or prejudice. If the rendezvous system participates in the
communication between the publisher and the ITF, then that rendezvous system must also be
trusted by the publisher.

3.1.2.3 Design Patterns

The discussion above leads to the identification of several design patterns for the architectural
components interacting with the ITF. In this section we present some of these basic patterns
and discuss their merits. The first four patterns deal with the interaction between the
rendezvous system and the ITF. The next three patterns then deal with the amount of
information and control given away by the ITF. Thus, one of the first four patterns may be
combined with one of the latter three to provide an overall design choice.

A1) Trusted Publisher Pattern: In this design, choice the publisher acts as the initiator and
communication hub between the rendezvous system and the ITF. As shown in Figure 3.9, the
publisher will interact in separate transactions with the rendezvous system, followed by the
ITF. This has the obvious advantage that each transaction can be controlled separately and
the publisher can detect and repeat any failed communication. In addition, no overall
transaction state is held by the network (leading to potential scalability and DoS problems).

Figure 3.9: Trusted Publisher Pattern

The publisher obtains aggregate subscription information from the rendezvous system. This
information is visible to the publisher (therefore, to some extent, compromising subscriber
confidentiality). In addition the publisher may be expected to honour subscriber preferences
(such as the choice of ITF or routing policies). This therefore implies that either the publisher
is trusted to make such a decision, or that the community of ITF providers will insist on seeing
aggregate Subscriber preference information signed by a trusted rendezvous provider
(discrete per subscriber information signed by each subscriber would reveal too much
subscriber information to the publisher).

The publisher passes the subscriber information along with its own preferences to the
selected ITF. The ITF then calculates the forwarding path and passes the forwarding
information back to the publisher.

A2) Direct Rendezvous-to-ITF Pattern: In this pattern, as illustrated in Figure 3.10, the
publisher engages the rendezvous system, but the subscriber information is passed directly to
the selected ITF without going back to the publisher.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 20(65)

Figure 3.10: Direct Rendezvous-to-ITF Pattern

Although this obviously protects the subscriber Information from the publisher, the publisher
must reveal routing preference information to the rendezvous system so that this can be
passed along with the subscriber information to the ITF. In a slight variant, the publisher
information may be encrypted so that it is visible only to the ITF. In any case the choice of ITF
is revealed to the rendezvous system. If the publisher makes the ITF selection, then the ITF
must be known and trusted by the rendezvous system (since otherwise the ITF may collude
with the publisher). This pattern potentially has some problems due to the fact that the
rendezvous-ITF interaction is hidden from the publisher. Thus, the publisher relies on the
rendezvous system to manage communications failures to the ITF.

Return communications from the rendezvous system and the ITF can be passed directly to the
publisher (through the publisher subscribing to such information).

A3) Tunnelled-through-Publisher Pattern: A variant on pattern A2 is to ‘tunnel’ the
communication from the rendezvous system to the ITF via the publisher. This maintains the
subscriber confidentiality but allows the publisher to control the transaction with the
rendezvous system and ITF separately.

To achieve this type of interaction, the rendezvous system encrypts the subscriber information
with the ITF key. Thus, the choice of ITF must still be known to and trusted by the rendezvous
system. This pattern is shown in Figure 3.11.

Figure 3.11: Tunnelled-through-Publisher Pattern

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 21(65)

A4) Forwarding Broker Pattern: If patterns A1, A2, And A3 are all unsuitable because of the
lack of trust between the publisher, rendezvous and ITF, we can introduce a broker that is
trusted by all these components. Since the ISP forwarding network (potentially) already carries
the communication between these components, it is a small step to involve it in the
rendezvous and ITF functions.

In this pattern, a forwarding network operator introduces a rendezvous and ITF broker
function. Although there may be several forwarding networks between the publisher, the
rendezvous and the ITF systems, the forwarding network chosen for this task should be
trusted by the rendezvous and ITF and used for communications to both of these functions.
Therefore, such a forwarding network may be the publisher’s ISP.

Figure 3.12: Forwarding Broker Pattern

As illustrated in Figure 3.12, the publisher is interacting with the rendezvous system via a
rendezvous agent that resides in the forwarding network. This may already be a natural
communication pattern since the local ISP is likely to host a local rendezvous system that can
also take on the role of the broker between the ITF and “foreign” rendezvous systems.

B1) Control at the ITF Pattern: Once the ITF has received information about the subscribers,
along with publisher preferences, it can use the information received from the forwarding
networks to make route selections and construct the forwarding path (e.g., a zFilter). If the
control is maintained by the ITF, then the publisher will receive a zFilter suitable for inter-
domain forwarding to its subscribers.

This model will be used where the publisher is not trusted with finer grained forwarding
information (for example partial paths or multiple paths).

B2) Control at the Publisher Pattern: In this model, the publisher is trusted to share the
route selection with the ITF. The ITF will perform some initial route candidate selection from
the wealth of forwarding network information. It will then pass the route candidates or partial
computed paths to the publisher. The publisher is then free to construct or choose between
the final paths.

This model reveals more information to the publisher, but conversely allows the publisher to
hide some final route selection criteria from the ITF (e.g., choice of route to avoid particular
forwarding networks). It also allows the publisher to respond dynamically by adjusting its
forwarding paths without recourse to the ITF for every route adjustment (for example, allowing
handover between multiple paths).

B3) Control in the Forwarding Network Pattern: Similarly to pattern A4, the forwarding
network can operate some part of the route selection function. At one extreme this can involve
not passing any route information to the publisher at all (if the publisher is not even trusted to
see the inter-domain zFilter), holding the forwarding path information in a topology agent and

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 22(65)

providing the publisher with only a link to the topology agent. In other variants, meaningless
identifiers can be provided to allow the publisher to choose alternative routes without exposing
the zFilter.

Such a topology agent must be trusted by the ITF to hold the route information as well as be
trusted by the publisher to make the correct route decisions on its behalf. This pattern is
shown in Figure 3.13.

Figure 3.13: Control in the Forwarding Network

The patterns above illustrate some simple design choices in order to understand and discuss
architectural options for implementing an ITF function. These are intended to serve as starting
and discussion points rather than final designs. It is important to note that any final design
does not have to conform to a single pattern but may provide a hybrid approach. Thus for an
architecture that is designed for both trusted and untrusted publishers, we might provide an
optional rendezvous and topology Agent in the forwarding network. In any hybrid approach,
the discussion then focuses on who has control of which option is taken during run-time.

In the following section, we elaborate on one hybrid model that caters to a wide range of
different trust relationships and forms our preferred design for a general-purpose (e.g.,
Internet) PSIRP architecture with both business and consumer services.

3.1.3 Design Choices

3.1.3.1 Possible PSIRP Design Candidate

As hinted above, we have developed a preferred candidate that uses the concepts of a
rendezvous and topology agents operated by a forwarding network (that is trusted by the
rendezvous systems and ITF). This is shown in Figure 3.14. In this example (for simplicity), we
assume that a single forwarding network operator can be found to meet the trust requirements
of the rendezvous systems and the selected ITF, although in reality the rendezvous and
topology agent can be operated in different forwarding networks with a peering arrangement
and trust relationship.

This design uses both of the options presented in patterns A4 and B3 to allow the forwarding
network operator to act as an intermediary between the publisher and both the rendezvous
and ITF systems. Such a forwarding network may be an ISP and is likely to have a contractual
or other direct relationship with the publisher that allows the forwarding network to select the
mode to operate in. It should also be a large enough commercial organisation to make the
establishment of trust relationships with rendezvous and ITF providers feasible.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 23(65)

Figure 3.14: Design Candidate

Technically, the choice of forwarding network in which to operate the trusted intermediary
Agents can be made at run-time in two ways. The first method involves manual selection by
the publisher. If the rendezvous system or the ITF refuses to directly interact with the
publisher, the publisher can route its communications through a forwarding network that has
the appropriate level of trust. This forwarding network does not have to be the attachment
network or ISP, but may provide rendezvous identifiers to enable remote publishers to connect
to its rendezvous or topology agents. This presents a bootstrapping problem since it assumes
that the publisher is able to create a forwarding path to such agents. This can be overcome by
using a rendezvous system for the agents, which freely grants the locations and subscriptions
of these Agents and an ITF, which likewise openly constructs forwarding paths to such agents.

The second approach uses more automation in the network. The publisher sends its
rendezvous requests to a local forwarding network whose rendezvous agent makes a decision
about whether it is able to handle such a request. If it believes it is not trusted to receive all
subscriber information from the rendezvous systems it may forward the request to another
network. This approach is not so different to the layered rendezvous architecture of PSIRP,
with the exception that results will not be returned to the publisher, but instead only returned
back as far as there is sufficient trust. This may then result in multiple rendezvous agents at
different levels into the rendezvous network holding subscriber results on behalf of the
publisher, which they are unable to pass on. These results may be sent separately to the ITF.

Both the manual and automatic modes can work together with the publisher making the first
choice of forwarding network rendezvous agent, and then the request being cascaded further
into the rendezvous network.

In the request to the rendezvous agent, the publisher includes a choice of ITF. Alternatively,
the rendezvous agent may insert its choice if no explicit choice is made by the publisher. If the
rendezvous agent is operated by the ISP, it is likely to be in a good position to choose a
suitable ITF with whom they have a good trust relationship. If the request is passed to further
rendezvous agents, then the choice of ITF must be respected by these agents (as otherwise
subscriber information would be sent to different ITFs). In this design, we make the
assumption that the publisher will have control over the ITF choice since otherwise we would
have to negotiate between the preferences of multiple subscribers.

Any rendezvous agent that receives a request from a publisher will first gather as much
subscriber information as possible from the available rendezvous systems. It then contacts the
ITF directly and passes to it both the subscriber information and the publisher preferences.
Along with this information, the rendezvous agent includes a method to contact its preferred
topology agent.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 24(65)

The rendezvous agent can also act as a cache and aggregator. For example, if a Publisher
request is already “covered” by previous publisher requests, then it may not be necessary to
involve the rendezvous systems. In addition, if a topology agent already has the required
forwarding information, it may not even be necessary to contact the ITF.

The ITF decides how much it trusts the nominated topology agent. It then calculates one or
more forwarding paths or path segments in order to fulfil the ITF request. This information is
then passed to the nominated topology agent. As mentioned above, this topology agent does
not need to reside in the same operator network as the rendezvous agent. For example, the
topology agent may be nearer to the publisher (for example in the ISP network) for network
efficiency.

Upon receiving the path information from the ITF, the topology agent decides how much it
trusts the publisher, which originated the request (publisher credentials can be carried in the
messages through the rendezvous agent and ITF). It then chooses between the following
options:

 Not to service the publisher and to return an error message. This is unlikely since the
rendezvous agent has already accepted the publisher request.

 To hold the path information returned from the ITF itself and provide the publisher with
a separate path to the topology agent (which of course can be distributed throughout
the network for scaling and path efficiency)

 To provide some or all of the path information to the publisher so that it can operate its
own forwarding.

It should be noted that even if a publisher interacted with the rendezvous systems and ITF
directly, it may still nominate a topology agent to hold forwarding path information on its
behalf.

Once a forwarding path is established, we also need to consider how the path reacts to
subscriber churn and mobility. Changes to subscriber information (in terms of destination
networks) will arrive via the rendezvous systems to the publisher or rendezvous agent. These
parties can then re-contact the ITF to request that the inter-domain path is updated. Changes
to the path information are then sent by the ITF to the topology agent of the publisher.

If a topology agent holds forwarding path information, then we must also consider the
retention of forwarding information. One mechanism would be for the publisher to express how
long it requires the forwarding path (in terms of time or number of packets). The topology
agent will grant the publisher an initial allowance and may then require additional refresh
handshakes with the publisher to ensure that the forwarding state is still required.

If a publisher is mobile, the link provided to the topology agent may be updated without
changing the rest of the forwarding information held by the topology agent. If the publisher
roams too far, then the inter-domain path information may be transferred to another topology
agent. Ultimately, the publisher can initiate a new request if it moves between networks.

3.1.3.2 Example Operation2

1. The publisher sends its intent to publish to the rendezvous agent in the forwarding
network (ISP) it is attached to. This request may be passed along a chain of such
rendezvous agents until it reaches one trusted by the rendezvous system to which the
request refers. This request contains the publisher’s preferences/policies for both the
rendezvous and the ITF functions.

2. The rendezvous system adds subscriber information to the request and returns the
message to the trusted rendezvous agent nearest to the publisher.

2 Note that although the terms ‘send’ and ‘receive’ are used in the example below, these actually consist of a

previous subscription from the receiver and a subsequent publication.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 25(65)

3. The rendezvous agent(s) pass the request to the ITF.

4. The ITF adds route information to the message and returns it to the topology agent.

5. The topology agent makes the final route decision. It constructs a forwarding path from
the publisher to the topology agent and returns it to the publisher.

3.2 The Problem of Un-Subscription
In the PSIRP architecture as presented in D2.3, the rendezvous and forwarding functions are
cleanly separated and may be operated by different business organisations. This offers
advantages, such as being able to operate very efficient forwarding paths, but presents the
complication that subscriptions and un-subscriptions are sent via the rendezvous function and
are not visible or enforceable by the forwarding networks. While a publisher may legitimately
decline to serve information in response to a subscription, it is not permissible that a publisher
ignores an un-subscription request and continues to bombard the subscriber.

In this section, we investigate the problem further and look at architectural alternatives (and
complementary approaches) to the problem of un-subscription.

3.2.1 Components in the Problem Space of Un-subscription

3.2.1.1 Rendezvous

The rendezvous function is responsible for registering subscriptions and providing attachment
network information to the Inter-Domain Topology Formation (potentially via the publisher or
publisher attachment network). As such the rendezvous function does not have information
about the forwarding topology or the link identifiers that are used in the construction of the
forwarding label (zFilter). Such information is shared by the forwarding networks with the
topology manager for each domain, while inter-domain links are shared with one or more ITF
operators.

3.2.1.2 Forwarding

The forwarding network is responsible for forwarding publications across its network to
subscribers attached to it. When a publisher has already interacted with the Topology
Manager, this process is as simple as matching the zFilter against outgoing link identifiers. In
this mode, the forwarding elements have no knowledge of subscribers, but are merely
forwarding traffic along a pre-calculated multicast tree.

Where traffic is arriving from another network, it is likely that the ITF does not have an intimate
knowledge of the subscriber’s attachment network. Therefore, finer-grained subscriber
location information is required in order to perform the intra-domain forwarding. In order to
perform this operation it is clear that the forwarding network needs to reference a local
rendezvous function for subscribers attached to it. This does not preclude the use of additional
foreign rendezvous providers to which the subscriber also register its subscriptions. The local
rendezvous function will operate in conjunction with the local Topology Manager to construct
the intra-domain forwarding tree. Such local subscriber location and/or the constructed intra-
domain path are likely to be cached to improve the transmission performance of later packets.

The operation for a local publisher to obtain a forwarding path zFilter may be identical to that
for inter-domain traffic. However, it may also vary since the publisher is on hand to negotiate
forwarding route preferences and operate some of the path selection algorithm. Whereas a
remote publisher forwarding across multiple domains may only have knowledge of the inter-
domain path, a local subscriber may have knowledge of the intra domain path to local
subscribers.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 26(65)

3.2.2 The Problem of Un-subscribing

If a subscriber chooses not to receive further information, it may unsubscribe from the
information identifier. Like the subscription, this request is sent to one or more rendezvous
providers, presumably including a local rendezvous function for the attachment network. Once
the subscription state is removed from the rendezvous system, new publishers will not be able
to acquire forwarding trees to these ex-subscribers.

The problem is simply that previous publishers may still have valid forwarding paths. This may
be because they hold a valid zFilter, or because such forwarding state is still maintained in the
network after the un-subscription (for example a cached intra-domain forwarding path for inter-
domain traffic). This may result in a situation where the subscriber receives information in
which it is no longer interested. Obviously, the situation can be exploited by malicious
publishers for denial-of-service attacks or other types of abuse.

3.2.3 Approaches to Un-subscription

There are a number of potential approaches to ensuring that the subscriber is not subject to
information overload or abuse (much) beyond the un-subscription.

3.2.3.1 Time-Limited Publisher Capabilities

The network may grant the ability to send traffic into the network for a limited time period. After
the period expires, the publisher (or other network function) must reference the rendezvous
system to check that the subscription is still valid before extending the right to publish. These
capabilities may be checked at the network edge, but can also be integrated into the Packet
Level Authentication scheme and checked at multiple enforcement points in the network. This
approach is shown in Figure 3.15.

Figure 3.15: Rendezvous Network trusts Forwarding Network

The problem with this approach is that the time window may not be sufficiently small to protect
the interests of the subscriber or sufficiently large to operate an efficient network. It is
therefore desirable to complement a publisher capability approach with an immediate
subscriber-side protection mechanism.

3.2.3.2 Time-Limited Network State

If forwarding state is held within the network (such as an intra-domain multicast path to
subscribers), then this state must be refreshed at a minimal interval. This will apply, for
example, to cached intra-domain forwarding tree information for inter-domain traffic as shown
in Figure 3.16. It will also apply to network held inter-domain paths (for example, where the
publisher is not trusted to hold or operate the inter-domain path selection).

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 27(65)

Figure 3.16: Rendezvous and Topology State Cached in Final Forwarding Network

The problems are the same as for time-limited publisher capabilities, except the result may still
be that traffic is forwarded into the network before being dropped. At first it seems that this
approach does not offer any benefit beyond the time-limited publisher capabilities. It should,
however, be remembered that the local forwarding network is likely to have an immediate
relationship with the subscriber and act on their behalf (as a direct customer). Limiting
publisher capabilities closer to the publisher (such as at the publisher ISP) requires a chain of
trust between the subscriber and publisher networks. We should also bear in mind that
network state retention will have to be managed. Thus such a solution will have to be
implemented for network state scalability.

3.2.3.3 Time-Limited Forwarding Identifiers

A slightly different solution is to change the Forwarding or Link identifiers used in the network
at set (but not necessarily the same or synchronised) intervals. This will invalidate any
forwarding path state held by either the publisher or by the network elements. These parties
will then need to re-apply for a new forwarding path, which will not include any ex-subscribers.
This approach may also be desirable to prevent attacks on the network that attempt to
calculate the network topology and link identifiers.

One problem of operating this approach alone is that applications will need to detect packet
loss before requesting a new forwarding path. This is wasteful in terms of network usage and
may not be tolerable to certain applications. Thus it is likely to be combined with some sort of
edge or publisher timer mechanism to request new forwarding paths before the old one
becomes obsolete.

3.2.3.4 Triggered Un-subscription (Rendezvous)

The un-subscription request may be propagated through the rendezvous systems to those
parties that requested subscriber information. These un-subscription notices need only be
conveyed when the last subscriber leaves a location (for example a local broadcast network,
or an attachment network for the inter-domain requests).

Trusted network components (such as a topology agent in the publisher’s attachment network
or the intra-domain routing agent for traffic arriving from inter-domain) will respect the ‘cease

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 28(65)

and desist’ notice and recalculate the forwarding path. In most cases the publisher itself
cannot be relied upon to behave appropriately when receiving an un-subscription request.
Thus, as discussed in the section on Inter-Domain Topology Formation, a trusted agent can
be used to hold the forwarding path state and refresh this as required by un-subscription
requests. This is shown in Figure 3.17.

Figure 3.17: Use of Trusted Agent

Regardless of other mechanisms, un-subscription requests should always be sent to the
rendezvous function in order to ensure that new publishers do not receive stale subscriber
information (or that information is received in previous locations for mobile subscribers). In
addition, subscriber information should be 'timed out' from the rendezvous system to protect
rendezvous state since subscribers cannot always be relied upon to unsubscribe.

Problems include the holding of valid network forwarding state by untrusted parties (such as
the publisher) and the delay in propagating the un-subscription notice through the rendezvous
function.

3.2.3.5 Triggered Un-subscription (Forwarding)

Due to the delay in propagating an un-subscription request through the rendezvous system,
we can consider that this should be combined with an un-subscription request sent to the
forwarding network. This may result in either the Forwarding Identifier of a link changing (and
hence traffic being dropped before reaching the subscriber) or the installation of a temporary
block on a forwarding identifier (until such time as one of the other mechanisms described
above takes over) as shown in Figure 3.18.

Figure 3.18: Un-subscription Request back into Forwarding Network

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 29(65)

The advantage of this scheme is that it is immediate, although it may result in traffic being sent
into the network that is later dropped (if there are no other live subscribers in that area of the
network). In the next section we discuss how this may be achieved in more detail.

3.2.4 Unsubscribing Using a Reverse Forwarding Path

When a subscriber chooses to no longer receive information it will unsubscribe using the
rendezvous identifier (and scope identifier) to the rendezvous function. This function should
encompass all rendezvous systems, which previously held the subscription registration and
should include a local rendezvous system for the local attachment network. This de-
registration from the rendezvous function is required to ensure that new publishers do not
include the ex-subscriber in their path formation.

At the same time the subscriber informs the local forwarding node (e.g. the attachment point)
of their instruction to unsubscribe. This assumes that the unsubscribing host is not multi-
homed, in which case the hosts should wait for a publication packet to arrive in order to
identify to which attachment forwarding node to send the un-subscription request (although it
is possible to flood the un-subscription request to forwarding nodes that may never see a
publication). The local forwarding node cannot simply change the forwarding identifier used by
the subscriber since other subscribers may also be present (in a broadcast network). In
addition the same forwarding identifier may also be used for different items of information that
the subscriber still wishes to receive.

Ideally, the forwarding identifier would become obsolete and the remaining subscriptions (for
either the ex-subscriber or other hosts) would be transferred to different forwarding identifiers.
However, since this would involve co-ordinating publishers and/or network forwarding state
(e.g., in topology managers) this would not be any more efficient than the un-subscription via
the rendezvous system. As a local (forwarding network) solution that can react more quickly to
unsubscribe requests, we can consider that traffic is bridged locally to new forwarding
identifiers or that information blocks are installed into the forwarding network.

If the final link is a broadcast network, there is no advantage in changing the forwarding
identifier if other subscribers remain, since the ex-subscriber may gain the same benefits by
not listening to the broadcast. However, if no other subscribers remain, or the host has a
dedicated link, then changing the forwarding identifier will stop unwanted traffic from arriving at
the host interface. In order to achieve this, the attachment forwarding node may be
subscription aware, managing a tally of current subscribers against rendezvous identifiers.

Instead of storing subscription state, an alternative would be to allow subscribers to co-
ordinate. Thus a subscriber who sends an unsubscribe message to the forwarding node may
be overruled by another subscriber asserting that the broadcast forwarding identifier should
still be maintained. This would avoid the requirement for subscription state in the forwarding
elements, although it may cause problems for subscribers that have a poor or intermittent
edge connection. Once it is determined that no other subscriber sharing the forwarding
identifier is receiving information for the rendezvous identifier, then the forwarding identifier
may be removed. If any subscribers are using the same forwarding identifier for other items of
information (via different rendezvous identifiers) then they must be informed of a new
forwarding identifier set to listen for their remaining subscriptions.

To do so, the edge forwarding node may replace the forwarding identifier and re-attach the
subscribers to this new identifier. It must then direct all traffic not for the unsubscribed
rendezvous identifier, but with a zFilter matching the original forwarding identifier over the new
forwarding identifier.

A largely equivalent technique would simply be to leave the forwarding identifier but to install a
block for traffic bearing the unsubscribed rendezvous identifier. One problem is that this block
cannot be propagated into the network beyond the point where other continuing subscribers
exist. Another problem is that new subscriptions would also need to be propagated into the
network in order to remove the block (or move it to the point where it only applies to the

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 30(65)

unsubscribed party). Where the block may be propagated along a reverse path created by
received packets, there is no way for a new subscription to be propagated, other than to flood
the network (to a determined number of hops) since the new subscription may not be entering
the network at a point where it is known that there is an upstream block.

As an alternative to using the rendezvous identifier to block traffic we can also consider a
partial un-subscription where the zFilter is used as the blocking pattern. In this case, the
subscriber is electing to unsubscribe from information sent from a particular network path
instead of information mapped to a rendezvous identifier. Although this seems interesting at
first (e.g., as a way of mitigating against denial-of-service attacks), it is worth noting that for
inter-domain traffic the zFilter may be identical for multiple publishers attached to the same
ISP (if the inter-domain routing is visible) or even for all traffic arriving on the local forwarding
network at the same peering point (if the inter-domain path is removed at the final domain).
This approach still shares the same problems of how to ensure that such blocks do not affect
other (current and future) subscribers.

Any blocks or redirects have to be maintained until either a subscriber (re)joins the
rendezvous identifier, or until a time window elapses. This window should be sufficiently long
so that it can support one of the other un-subscription mechanisms discussed earlier.

Blocking unsubscribed traffic at the edge of the network, although beneficial to the
unsubscribed host, does not benefit the forwarding network. Ideally the traffic would be pruned
as close to the publisher as possible. Thus, un-subscription notices may be propagated
backwards into the network. The problem is that this cannot be performed (without wasteful
flooding) until publications arrive, since there is no knowledge in the network of where
publications about a particular rendezvous identifier may originate. When a publication arrives
at an edge forwarding node (or end host) which currently has an un-subscription block in
place (for all matching forwarding identifiers in the zFilter), the node may propagate the un-
subscription request back into the network. Each forwarding node along the reverse path must
check to see if it has other potential subscribers and only propagate the un-subscription
request further if it has received un-subscription requests from all forwarding branches that
match the zFilter. Since new subscriptions must be flooded the blocks should only be
propagated in a predetermined number of hops.

3.2.4.1 Using composable and RId dependent FIds

In-packet Bloom filters (iBF) can be used to create the following two properties for forwarding
identifiers:

1. The forwarding identifiers can be expressed as unicast paths and the source can combine
those into a single (or multiple) multicast tree(s) by bitwise ORing them together.

2. The forwarding identifier may be tied to a particular rendezvous identifier for a specified
time period.

The latter is accomplished by each forwarding element having a periodically changing key that
is used, in combination with the RId, to compute the identifiers used to making local
forwarding decisions. The identifiers can be created in such a way that there is a return
channel on the forwarding path, which the receivers can use to replenish the subscription.
This approach reduces the scope of rendezvous into a facilitator for initiating communications
between publisher and subscriber. The rendezvous itself does not need to maintain state for
on-going communications.

The composability of FIds ensures that the subscribers do not depend on each other, and the
use of in-packet Bloom filters means that no publication/subscription related state is required
in the forwarding elements. However, in the face of a denial of service attacker, the un-
subscription may either take some time (for the forwarding elements to change their keys), or
a helper function in the network will be needed. The purpose of the trusted network based
helper function would be to gather the subscriptions and perform the composition. Then, it

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 31(65)

would forward the composition concatenated with a set of zero's and encrypted to the
publisher. Hence, once the helper function receives an unsubscribe request, it can remove the
receiver from the composition before forwarding the new forwarding id to the publisher.

3.2.5 Discussion

The PSIRP network should always operate un-subscription via the rendezvous system since
the purpose of the rendezvous system is to maintain rendezvous state. However, this alone is
not sufficient since (a) the publisher may not be trusted to cease activity and (b) the latency
may be unsuitable for some applications. The use of either time-limited publisher capabilities
or time limited network state or forwarding identifiers is an effective remedy against (a). The
use of time-limited publisher capabilities can be combined with the Packet-Level
Authentication work and the security framework already reported in D2.4. This approach also
stops the publication as early as possible without consuming network resources. Changing the
forwarding identifiers provides a second line of defence and prevents targeted network attacks
that require knowledge of the forwarding identifier topology while network state will have to be
time-limited to avoid state scalability problems.

A simpler solution would always be to ensure that a trusted part of the network will respond to
the un-subscription through the rendezvous system. This may result in the immediate re-
creation of the local network forwarding path. In addition, we have already described in the
section on ITF operation how local agents within the forwarding network may increase the
level of trust in publisher operations. Such a topology agent can also be employed to reliably
react to un-subscription requests.

The reverse forwarding path un-subscription request, described above, can be used as a
short-term mechanism to provide low latency un-subscription response. It does not provide a
complete solution since to do so would require the propagation of un-subscription requests
through the network to the publisher and the maintenance of long-term (un)subscription state
in the forwarding network. Even in this case it cannot prevent the first packet arriving from the
publisher. Although we have discussed that it is not feasible to propagate information blocks
very far into the network, this may not be such a drawback if the density of the remaining
subscribers is high.

3.2.6 Unresolved Weaknesses

Even if all the mechanisms above are operated, there remains a limited opportunity to perform
attacks. Distributed Denial-of-Service attacks may still overwhelm the ability of an end-host to
unsubscribe. Although each separate attack stream may be quenched (if the host has the
capacity to do so fast enough) the un-subscription blocks may not be carried deep enough
into the network to provide uncongested routes for legitimate traffic. This is particularly a
problem if other nearby hosts fail to react to the attack and are therefore still considered to be
valid subscribers. Another concern is that any security mechanism is itself a means for attack.
Thus, attackers posing as subscribers may attempt to overload the un-subscription
mechanisms by selectively subscribing/unsubscribing and causing cascades of control
messages through the network. Indeed, bogus subscribers may send unsubscribe
notifications to the forwarding network since it has no direct knowledge of authorised
subscriptions (although it has authorised attachment) in an attempt to overwhelm the edge
forwarding node with un-subscription state. A malicious publisher acting in concert can then
target nodes deeper into the network. Adding subscription validity checks would detract from
the low latency operation of the forwarding network un-subscription mechanism and only
provide an alternative opportunity for attacks.

3.3 zFormation
The zFilters are vulnerable to replay attacks, in which an attacker uses a given zFilter for
traffic it was not meant for. Second, it is also possible to perform a correlation attack by
combining knowledge from several zFilters to compute information about link identifiers. This

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 32(65)

will enable an attacker to guess at least a partial path to a target it has not been authorized to
send to. Finally, an attacker may be able to inject traffic to an existing zFilter if he can guess
(or compute) a zFilter that leads to the path described by the zFilter.

To solve the abovementioned problems, Bloom filters can also be built using dynamic link
identifiers or edge pair labels [Est09]. Instead of using a static forwarding table, which
indicates the LIT for a given outgoing link, the router has a local secret key K and an
enumeration of its neighbours. It uses these to compute an edge pair label with a function Z(K,
#in, #out, F) where F is information from the packet, e.g., RId, and Z a secure cryptographic
function that is fast to compute (e.g., a spreading hash function). The dynamic computation of
link identifiers makes it possible to have secure forwarding identifiers that depend on the RId
on the packet. Hence, a node cannot use a given FId, RId pair for sending packets with some
other RId. Additionally, both incoming (#in) and outgoing link (#out) are used for computing
the edge-pair label. This makes it more difficult for the attacker to perform an injection attack.

This approach still leaves a slight possibility for combining existing zFilters that describe
crossing paths, assuming that the attacker is capable of getting zFilters with a chosen F (e.g.
between attacking nodes). This can be prevented, if each router performs a secure bit
permutation on the zFilter of every packet it forwards. The bit permutation needs to depend on
F and local secret key to prevent an attacker from using a correlation attack to gain
information on the permutations used. The effect of using bit permutations is to prevent an
attacker from combining zFilters that have a different root in the network.

3.4 Identifiers
In this section, we address two issues related to identifiers in the context of the PSIRP
architecture. The first relates to general design considerations for identifiers while the second
focuses on the specific usage of so-called algorithmic identifiers [PSI09].

3.4.1 Design Considerations for Identifiers

While there is possibly a longer list of design considerations for identifiers, the following
section focuses on two crucial considerations, namely those for long-term as well as variable-
length identifiers.

3.4.1.1 Long-term Identifiers

Using rendezvous and scope identifiers with the P:L structure (similar to DONA, see also
[PSI10]) as long-term identifiers is problematic, since the security mechanism implementation
is coupled with the identifier itself in the form of a public key that can be compromised or lost.

The probability of key leakage can be reduced with delegation. In that case, the master key,
which is part of the identifier, is stored offline and delegated keys are used for the actual
communication. Security may also be improved by storing cryptographic keys into a secure
separate hardware store inside the node. Therefore, even if the node is compromised, the
attacker could not read the corresponding private key.

However, the abovementioned solutions are not completely sound, and therefore they are not
suitable for applications that use the network level identifiers as the sole identity of a
persistent entity. For example, in a distributed application, the identifier may be scattered in
multiple systems and changing the identifier may become unmanageable. One solution is to
use the application identifier as a long-term identifier, and treat SIds and RIds as more or less
temporary network level secure identifiers. Even if the RId is changed, a resolution service
with an orthogonal security mechanism (such as manually configured trust hierarchy) would
resolve the application identifier to another RId. This is analogous to using DNS names
instead of IP addresses as a way to permanently refer to the servers in the current Internet.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 33(65)

3.4.1.2 Variable-length Identifiers

In PSIRP, RId and SId form the identification means for the narrow "waist" of the architecture
and they are used by all functions of the system to identify publications and scopes. Because
the basic identifiers are fixed in length, it is not possible to encode arbitrary semantic
information in them. In some cases, when the structure of the information is known
beforehand, it is possible to use algorithmic ids (AlgIds) to generate the RIds on the subscriber
side, but in general, variable-length identifiers are needed. Of course, it would be possible to
implement the functionality of variable-length identifiers using only fixed length identifiers, but
this would require additional message exchanges, adding a round-trip time to the latency and
giving up the possibility of locality (using caching), which is unsuitable for some interactive
applications.

For example, a map application could embed GPS coordinates in a URL that names the
content associated with the map coordinates. In such cases, the data is probably stored in a
sparse data structure on the server side and generated on-the-fly based on requests.
However, the application is still data-centric in nature and it is possible to cache the results in
the network based on the hash of the identifier. The network does not need to interpret the
identifiers and the end-to-end principle is adhered to, but the full variable-length identifier must
still be contained in the subscription and rendezvous messages so that the data source and
scope home can construct the data based on the embedded information. Note that it is not
enough to just store the hash of the identifier, as it is not possible to decode the semantic
information back from the hash on the publisher side. In payload messages, the RIds can
simply be replaced with short hashes.

It should be possible to have multiple naming schemas for application level identifiers (AIds),
which are then mapped to RIds/SIds by some external means based on different application
requirements. Some of these identifier types can have variable-length names for content.
Therefore, we could specify an extended RId label that can be optionally included in the
payload of rendezvous and subscription messages and is used to identify the data together
with the RId contained in the message header.

3.4.2 Update on Algorithmic Identifiers

3.4.2.1 Identifiers

The PSIRP architecture is information agnostic – information may have explicit or implicit
relationships, defined on any number of levels including application, end user, transport and
ontologies [PSI09]. As such, it would be useful to be able to relate this information either
explicitly or implicitly, to which there are two technical approaches - relationship tags and
AlgID’s.

3.4.2.1.1 Algorithmic Identifiers (AlgId’s) and Relationship tags

The term algorithmic identifier (or AlgId) refers to identifiers or graphs of identifiers that can be
created through automated algorithms. End hosts could use the same algorithms to generate
other related identifiers to enable, e.g., information subscription.

Relationship tags are used to describe tags applied to the packet header (or payload) to form
relationships between two seemingly unrelated identifiers, and may or may not be sufficient to
produce other related identifiers. Given that relationship tags can be thought of as a subset of
AlgIds (in terms of functionality), this document will focus only on the design and
implementation of AlgIds.

Figure 3.19 illustrates the abstraction available through the use of identifiers, enabling the
user to choose the most appropriate form.

Figure 3.20 gives an example instantiation of Figure 3.19, showing that either the algorithm
alone, the place to find the algorithm, or an algorithm to find the place to find the algorithm can
be transmitted.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 34(65)

Figure 3.19: AlgId hierarchy

Figure 3.20: An example instantiation of the AlgId hierarchy with algorithms

Taking the general case as illustrated in Figure 3.19, algorithmic identifiers are generated
using a function, which takes inputs (which could include a RId or other parameters) and
outputs a Rid. It is therefore the use of an algorithm, which is the key differentiator between
AlgIds and relationship tags.

3.4.2.1.2 Usage within PSIRP

As outlined in PSIRP D2.4, there is a wide range of potential network uses for algorithmic
identifiers.

Subscription Management

In network architectures such as PSIRP, the subscriber selects and subscribes to individual
identifiers. As these identifiers should ideally be uniformly distributed throughout the identifier
space to avoid routing hotspots, PSIRP provides scopes (denoted as SIds, see [PSI09]) within
which the individual information identifiers (RIds) are published. We can envision that there
are several alternative semantics for publishing and subscribing to identifiers structured in a
hierarchy (it is important to note that these semantics do not reflect particular semantics at
certain interfaces, such as on the service level, but publishing actions throughout various
levels of our architecture). Publishing to a (non-leaf) identifier within the hierarchy can result in
three actions:

(1) The information is sent over the network on the specified identifier. No function is used to
generate additional AlgIds for the publisher.

(2) The information is sent over all identifiers that are reachable in the hierarchy from the
specified identifier (including the specified identifier). A function can be used to derive the
subordinate AlgIds.

(3) The information is sent over all identifiers that are (common) antecedents in the tree
(including the specified identifier(s)). A function can be used to derive the antecedent

Similarly, subscription to an identifier can result in:

(1) Subscription to information carried over the network on that identifier.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 35(65)

(2) Subscription to information on (that identifier or) any descendent identifiers in the
hierarchy.

(3) Subscription to (information on the identifier(s) or) any (common) antecedent identifiers in
the hierarchy.

If all options are available, an application of algorithmic identifiers must take care to match the
publication and subscription semantics. For example, choosing the second option for both the
publisher and the subscriber would result in the information being delivered multiple times
over different identifiers.

Forwarding State Aggregation

Similar to subscription aggregation, algorithmic identifiers may also perform a role in the
forwarding function. In such networks, links, waypoints or intermediate networks may be given
identifiers that are used to control the forwarding of information. This concept is less useful in
overlay identifier-routed networks where traffic is forwarded via the rendezvous point, but is
applicable to networks with a separate forwarding path specification. Since the PSIRP network
architecture separates a (fast) forwarding path from the (slow) rendezvous path, such
techniques are applicable here. PSIRP specifies forwarding links using forwarding identifiers
(FIds, see [PSI09]). Thus, we can consider that these can be either algorithmically generated
or aggregated into longer path identifiers. For security reasons, the FIds within the PSIRP
forwarding network are volatile as subscribers remove their interest in information. Thus,
functions can also be provided to determine how such FIds are cycled. Trusted publishers, or
topology formation components, may use secret parameters to AlgId functions in order to be
able to determine how the forwarding identifiers change over time.

Caching

To perform effective caching, we must identify useful chunks of information. For example, it is
probably of little use to collect a few frames of video without the associated meta-information,
or at least it may be more useful to retain complete frames than frame deltas in the case a
cache needs to perform selective dropping. The cache therefore needs to be able to identify a
complete useful set of information to be cached. This could be achieved if such a set were
identified by an identifier and the cache was aware of how many related identifiers were
children of such a set identifier. For example, an instruction could be sent along with an item
of information that the identifiers of related “siblings” in the useful set are generated using a
sequence number 1...N, a function f, and a set identifier S.

Coding

It is possible that the same information can be sent over the network using different
encodings. Such encodings may be lossless, preserving the original information, or may
transform the information (e.g., compaction to different video bitrates). Such encodings may
be identified automatically by generating AlgIds. An application that wishes to adapt its bitrate,
would therefore be able to automatically generate the AlgId of the required encoding and
subscribe to this new information feed. Alternatively, mobility to a different device with a
different screen size or audio capabilities might also result in subscription to a different
encoding. This approach would also work for layered video, where each layer would be
identified with an AlgId produced from the original information identifier.

Return Path

Many applications may wish to operate in a client-server mode. One communication pattern
for implementing such a client-server relationship over a natively publish-subscribe paradigm
(such as provided by PSIRP) is for the server to subscribe to an identifier to receive requests
for information. To return the response, the client also needs to subscribe to an identifier. The
identifier used for this return path may be automatically generated as an AlgId. Thus, a

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 36(65)

request-reply transport layer operating over a publish-subscribe network might automatically
subscribe to the reply AlgId before sending the request on the original identifier.

Flow Control

AlgIds could also be used to perform flow control. A simple example is that the information
could be sent at different rates using different AlgIds. Alternatively, an AlgId derived from the
content delivery identifier could be used for signalling information to control the sender rate
(like TCP). Any application wishing to adapt the rate for a particular identifier would send
requests to the AlgId automatically.

Content Fragmentation

Fragments of content (such as BitTorrent pieces) may be sent by using AlgIds. Any
application wishing to receive a complete item of information can generate and subscribe to
the identifiers for each fragment, instead of requiring that these are explicitly listed in content
meta-data. Such fragmentation can also be structured semantically – e.g., voice, video,
biography, trailer etc.

Sequence Numbering

Any application wishing to produce a sequence of information items may use AlgIds for each
item in the sequence produced from a sequence identifier. For example, the temperature
reading from a sensor may be identified by a single identifier. Each separate reading is then
allocated an automatically generated AlgId. Any application wishing to follow the sequence
must adapt its subscription ready to receive the next item in the series. This allows previous
items to be repeated without burdening applications that have already received them.

Error Control and Reliability

Similarly to flow control, an AlgId can be automatically generated for any application that
wishes to receive network delivery errors associated with another information identifier. Other
AlgIds may then be used for the retransmission of information. Using an AlgId for error
correction allows a sending application to retransmit information without burdening multicast
listeners who received the information correctly. Separate AlgIds may also be generated to
transmit logs of the information that is being sent over other identifiers so that applications can
detect missing deliveries.

Announcements

Prior to sending information, announcements may be sent over corresponding AlgIds. These
announcement channels may carry announcements for a variety of other identifiers. Thus, an
application can subscribe to a few announcement AlgIds, covering its broad information
interests. When an announcement is received, they can then join the correct rendezvous
identifier to receive the information, reducing the average subscription state in the network
and allowing receivers to pick and choose which information they receive over a rendezvous
identifier.

3.4.2.2 Design Choices

In this section, we examine some of the questions along with the resulting options available
for designing an AlgId scheme:

 Which AlgId scheme could the publisher use?

o Which class of function should be used?

 Where will any AlgId relationship testing take place?

o Will there be enough information provided in the packet for this, or will it be
stored externally?

 How and when will this AlgId scheme be communicated to the subscriber?

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 37(65)

3.4.2.2.1 Choice of class of AlgId function

When designing an AlgId scheme, there are four classes of functions available for the
publisher to choose between, based upon the requirements of the scheme for the information
being published.

Identifier generated from a single parent

Figure 3.21: Identifier generated from a single parent (one-way function)

The first class includes one-way functions (e.g., hash functions) that generate identifiers from
a single parent. While this limits the generation of identifiers to descendents only, in some
situations this would be seen as a benefit as it would restrict the linking of parents to children
only to those who knew both the parent and child identifiers in addition to the algorithm and
any secret keys used.

Identifier generated from a single parent using a reversible function

Figure 3.22: Identifier generated from a single parent (reversible function)

The second class of functions takes a single parent and uses a reversible function, for
example a block cipher (when input parameters are also known). This enables the generation
(and insertion) of both descendents and antecedents, offering the most flexibility to the user of
the scheme.

Identifier generated from multiple parents using a one-way function

Figure 3.23: Identifier generated from multiple parents

This third class of function takes multiple parents to generate a child identifier using a one-way
function, for example a bloom filter. A result of applying an algorithm from this class is that
information is lost. As a result, it is imposssible to generate the parent identifier using the child
identifier. Whilst the child may be able to surmise a potential set of parents and an even larger
set of antecedents, this will make this class of function unsuitable for some scenarios where
accurately generating parent identifier(s) is a required attribute. Additionally, once an identifier
has been created, no new antecedents may be added to the graph.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 38(65)

Identifier generate from multiple parents (reversible)

The fourth class of function takes multiple parents to generate a child, however by using a
reversible function and storing function data along with every identifier, the parent identifiers
can always be generated given that of the child. An example usage of this could be for news
feeds where a topic can belong under multiple categories.

Figure 3.24: Identifier generated from multiple parents using a reversible function

As each class of functions has different attributes which may or may not be applicable for
certain uses, the choice of class of function is one best left to the publisher.

3.4.2.2.2 Relationships

Given that identifiers are usually expressed using a generalised graph model, there are a
handful of mathematical relationships, which we may want to be able to test:

 Reachability: Are two information items part of a larger data item?

 Parent/Child: Direct reachability (non-transitive).

 Ordering: Which is the antecedent and which the descendent (particularly useful for
fragmentation and sequencing)?

 Range test: Given three identifiers does one lie in the middle of the other two (useful
for subscription ranges)?

 Common antecedent/parent: Given two identifiers, are they related in a larger graph?
This would not necessarily require knowledge of the antecedent.

 Edge ordering: If multiple children are produced from a node either using the same or
different functions, can we apply ordering precedent to the functions and thus produce
a complete ordering?

 Prevent linkability: Given two identifiers, we may want to prevent testing of the
relationship without a third (or more) node(s). For example, to test for a common
antecedent, the user would have to have knowledge of the antecedent itself.

Relationship Testing and Communication

Given the relationships above, there are several associated roles, which we may wish to be
performed within the network; relationship testing, relationship generation, AlgId source and
AlgId client.

A relationship testing role would be used to evaluate relationship tests and return a true or
false answer, unlike relationship generation, whereby the service would be expected to return
a RId or other information. The AlgId source and AlgId client will be explored in more depth in
the next section.

Information structure (Relationship) communication

Depending on the role performed, the question of how to transmit the publication information
structure remains: should information be transmitted along with every RId, should the

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 39(65)

information be available as a bulk download under a separate RId, or should it only be
available through a relationship testing or generation service?

If the information structure was transmitted in every frame (making each RId descriptive of its
location within the overall structure), fields, which the publisher may wish to include,
depending on the algorithm, include:

 A Root flag

 A Leaf flag (i.e., do not continue to generate descendent identifiers)

 Branching order

 Total number of branches off parent (child count)

 Depth (could be inferred by generating path back to the root identifier)

If the information structure was available as a bulk download, this could be available under a
separate RId, which may be transmitted in the first frame, in every frame or in a selection of
frames.

Lastly, a service could be provided to enable others to submit relationship test or generation
requests, abstracting the complexity of this task to a potentially more capable node.

Relationship testing and generation location

Having explored how the information structure can be transmitted, there are three places in
which the testing and generation could take place:

 The local node wishing to find out the relationship (usually the subscriber, but may be
an intermediate node on the forwarding path, such as an opportunistic cache)

 The publisher

 A third party, such as a specific relationship testing service

Option 1 – the local node

As the local node will usually (but not always) be the subscriber, it should either already have
the algorithm to generate related identifiers, or possess an RId from which the algorithm could
be retrieved. In the latter case, this information may have been included in the first packet or a
subsequent packet depending on the used communication scheme (discussed in the next
section).

Given that the relationship data will be available at the local node, any relationship testing or
relationship generation would be performed locally, preventing the node from making frivolous
tests as this would only impact the local node’s resources.

Option 2 – the publisher

Whilst being the most obvious choice, given that the publisher would have full knowledge of
any relationships between identifiers (including any secrets required by the algorithm), this
could result in misuse depending on the type of service offered.

The most computationally intensive service would be to offer relationship generation, in which
users could, for example, send requests over a separate RId with a request similar to
getParent(childRId). This would therefore be a prime target for a DoS attack.

To somewhat mitigate this effect, a relationship testing service could be offered, in which the
requests would have to provide the expected answer and the service would only have to
return true or false, for example testIsParent(expected_parentRId, childRId).

If the publisher provided a relationship testing service over a special RId over which test
requests could be sent using a specific payload format.

Option 3 – A third party

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 40(65)

Rather than requiring the publisher to handle relationship test requests, this could be
“outsourced” to a helper function residing within the network, and as such would allow multiple
different services to operate, potentially with different restrictions on use (public/private/paid
for). This requires that the third party has a full copy of the publication information structure, or
has some knowledge of the identifiers used, the function itself and any secrets required for its
use. While offering the advantage that the publisher would not have to expose another
potential means of attack, it would result in having to share this information with a third party.

There are two types of helper function, which could be present in the network:

 an AlgId generating helper, which could pass AlgIds back to the subscriber or
perform the relationship tests.

 a Value added helper, which could, for example, generate identifiers (and test
relationships as required) and then perform some action. For subscription
management, this could be hiding the complexity of the data being addressed via
separate RIds by performing the RId resolution and subscription locally so that the end
subscriber only sees a stream of data.

Suitability

Given the options, the choice of location and information structure communication for
relationship testing depends largely on the data being transmitted and thus on which and how
often the relationships need to be tested.

Some of the factors influencing this decision are as follows:

 Frequency and type of relationship look-ups

 Free space within packet headers/payload

 Spare network capacity

 Sensitivity of information relationships

 Complexity of information relationships

If on one hand the subscriber or an intermediate party will only rarely require relationship
testing, then, rather than including this information in every packet, it would be wise to require
the subscriber to request this information separately from a third party for every relationship
they wish to test, as illustrated in Figure 3.25.

1) Helper publishes intention to receive requests for relationship information

1) Subscriber subscribes to receive data relating to its relationship request

2) Helper replies with relationship information

Figure 3.25: Third party relationship testing using a helper function

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 41(65)

Conversely, if the subscriber requires frequent relationship testing, then storing this data as
close to the subscriber is beneficial, either by transmitting it in every packet (Figure 3.26), or
providing the information available as a bulk download, via its own RId (Figure 3.27).

Figure 3.26: Enabling local node relationship testing by adding in-frame relationship

information

Figure 3.27: Bulk relationship structure information download

Figure 3.26 also illustrates that the content publisher does not have to be the AlgId publisher,
as the subscriber first subscribes to RIdA, which includes a link to the location of the algorithm
to find the relationship data, RId B. Upon subscribing to RId B, the AlgId scheme is transferred
in the payload along with the parameters to generate the RId, RId C of the location for the
relationship data. Lastly, the subscriber subscribes to RId C to receive the relationship
information.

3.4.2.2.3 Schemas

When using algorithmic identifiers, it is likely that no scheme (or class of generating function)
will perfectly suit every situation. Therefore, enabling different schema would allow the user to
tailor the algorithm to suit the particular task in hand. This flexibility could be achieved through
the implementation of a generic AlgId framework, which defines common methods and
properties.

This framework could take any number of forms, including one of the following;

 An X bit header field referring to standardised AlgId schemes, published at a centrally
trusted repository, similar to how XML and HTML schema definitions are in the current
Internet. Within this scheme, setting the field to all zeros could indicate no schema,
while all ones indicate a custom schema being described in the payload.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 42(65)

 An AlgId schema reference RId which would allow any custom scheme from any
location. This would present space issues (which could be solved in a number of ways)
and numerous security issues.

o Enable upload of custom schemas to one central repository, with the scheme
reference being assigned a unique identifier. An example of this, using the
current Internet addressing scheme for clarity, would be
http://schemaDB.org/custom/ref=#, where # is the XX bit unique identifier

o The same as above, but using a short bit pattern prefix to enable the use of
several different repositories. This could enable the use of a scope local
repository.

o Require that the schema URL to be no longer than XX bits.

o Use a time-limited unique identifier from a pool and store the schema along the
proposed route(s).

Schema Communication

Having decided upon a particular scheme, the question remains of how (and when) to
communicate this scheme to the subscriber. The usual conversation between publisher and
subscriber will result in the subscriber requesting information from a publisher given a RId.
Assuming the RId is actually generated using an algorithm, and the subscriber is interested in
this related information, there are a few possible ways to communicate the algorithm used:

 In the first frame

o In the header in a standardised field (such as a reference to a schema
repository

o In the payload with no other content (content begins from first algorithmically
generated RId)

o In the payload, at the start or end of the actual content to be communicated

 In every frame

o In the header in a standardised field (such as a reference to a schema
repository

o In the payload

 In a separate frame under a different RId or via a helper function

Figure 3.28, 3.29, and 3.30 illustrate how the schema could be stored under a different RId,
which could either be the location of a helper function or the schema alone.

Figure 3.28: Example header structure using a schema Id

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 43(65)

Figure 3.29: Example header structure using a schema RId

Figure 3.30: Example header structure using a repository Id and schema Id

3.4.2.2.4 Packet Addressing

When choosing which AlgId scheme to use and how to implement it, the granularity of RID
addressing is also important.

Every frame has its own RId

When information is transmitted such that every frame (and frame fragment) has its own RId,
the algorithm information must be transmitted within every fragment as it cannot be assumed
that the subscriber has received any previous frames related to the currently subscribed RId in
which the AlgId scheme is contained.

Multiple frames share a single RId

When information is transmitted over an RId in which every frame may not have its own RId,
the issue of when and where to transmit the AlgId and relationship information becomes more
complicated. This may occur when the application has no desire to be able to individually
identify information frames – for example if an item of content is broken down for transport or if
previous information frames become obsolete.

Figure 3.31: Multiple frames sharing the same RId

If the AlgId scheme was transmitted only in the first frame sent over the RId, subscribers
joining the stream half way through publication would not receive this information. This leaves
us with an open question of WHEN to transmit this information:

 Transmit the AlgId scheme in every frame

 Transmit the AlgId scheme in the first frame

 Transmit the AlgId scheme in selected frames (analogous to video files having key
frames and deltas)

Another choice is whether to transmit this information combined with or independent from the
content to be delivered.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 44(65)

Figure 3.32: AlgId scheme combined with the content to be delivered

Figure 3.33: AlgId scheme separate from the content to be delivered

Suitability

Comparing the possible options, the choice primarily comes down to the space taken up for
transmitting the AlgId scheme.

If the scheme were to be transmitted in full, then choosing to deliver it in every frame would
result in little space left for the actual content. Transmitting it in only the first frame sent over
the RId could result in subscribers who join the stream half way through missing the scheme
information, meaning that the subscriber would have to find another method to receive this
information (for example waiting for the content to transmitted over the RId to loop back round,
if transmitted in this way by the publisher). To mitigate the effect of joining the stream half way
through, the publisher could transmit the schema periodically to ensure that those joining half
way through do not have to wait too long for this information. Unfortunately, finding the
balance between the time period to wait for schema re-transmission is likely to have to be
tweaked on a per publication basis.

If on the other hand the scheme was just an RId upon which the information was published,
then all three options to transmit this information would be feasible, again based upon the
amount of free space that would be left in each frame.

Finally, there appears to be no clear advantage to delivering the scheme combined with the
content or in separate frames, and as such this decision should be left up to the publisher.
One permutation of transmitting the scheme combined with the content which would not be
advisable would be to cut the full scheme into chunks and transmit this content over a number
of frames – you would have to ensure the user received every fragment as otherwise the
scheme would be incomplete.

3.4.2.3 Use Case: Subscription Management

In this section, we take the example of subscription management to elaborate upon the
requirements and conclude with a potential implementation for an AlgId scheme.

3.4.2.3.1 Choice of content delivery model

Definition of terms:
Publish: An operation at the network level which involves one party (namely a content
publisher) to transmit (publish) data over a predefined RId to one or more subscribers

Subscribe: An operation at the network level whereby a user subscribes to receive content
published by a content publisher over a pre-defined RId.

Content publisher: An entity which holds content and can make it available for others to
request.

3.4.2.3.2 Basic PSIRP approach

The next diagram illustrates the PSIRP model for matching publishers and subscribers.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 45(65)

Figure 3.34: Basic PSIRP delivery model

Step 1: The publisher, P1, fetches subscription information and registers to receive updates
over a known RId belonging to the RVZ node

Step 2: The subscriber, S1, subscribes to a chosen RId

Step 3a: The publisher requests a forwarding path to S1 from the ITF.

Step 3b: The ITF returns the forwarding path to P1.

Step 4: The content publisher publishes the content C1 to S1

With the basic PSIRP model, only one RId is exposed to the publisher and subscriber,
although others are used internally, for example between the publisher P1 and the ITF.

3.4.2.3.3 Document delivery over the basic PSIRP model

Figure 3.35: Document delivery over the basic PSIRP model

Step 1: The content client requests content C1 using RIda to the rendezvous system

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 46(65)

Step 2: The content publisher makes available content C1 and advertises this to the
rendezvous system (this availability can also be signalled before the content client requests
the content in step 1).

Step 3: The rendezvous system returns a list of network providers, which contain content
providers for content C1 to the content client.

Step 4a: The content client, CC1 requests forwarding paths to each of the network providers
returned by the ITF system

Step 4b: The ITF system returns the forwarding paths to CC1

Step 5a: The content client sends out content provision requests over each of the forwarding
paths to the various content providers of content C1, each containing a back channel id for the
replies

Step 5b: The content client subscribes to each of the back channel Ids (usually simultaneously
or before the content provision requests are sent).

Step 6: Using the back channel included in the content provision request, each content
provider sends tenders with its own back channel Ids (to which it automatically subscribes).

Step 7: The content client accepts one or more of the tenders and responds to the content
providers(s) including new back channel Ids (to which it automatically subscribes) for the
content to be delivered over.

Step 8: The content provider(s) receive the tender acceptance for content C1 and publish the
data as requested.

Within this model, multiple RIds are exposed and used, particularly during the tendering
phase.

3.4.2.3.4 Document delivery over a specialised “Document Model”

Figure 3.36: Document delivery over a specialised Document Model

Step 1: The subscriber S1 indicates its interest to request and sync content C1 to the
rendezvous system.

Step 2: The content publisher, P1, makes content C1 available and informs the rendezvous
system.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 47(65)

Step 3: The rendezvous system matches the requests locally and chooses a publisher P1
(from those it knows have made the content available) and registers S1’s interest to receive
that content with P1.

Step 4a: The content publisher, P1, having received the request from S1, requests a
forwarding path from the ITF.

Step 4b: The ITF returns the forwarding path to P1.

Step 5: The content publisher, P1 publishes C1.

This model provides a one-to-one mapping between content identifiers and rendezvous
identifiers, making this model tightly coupled. While this model uses more than one RId
internally, only the one RId (based upon the content being delivered) is visible to the publisher
and subscriber during communication in steps 1, 2 and at the final hop of the forwarding
network (as it would be visible under various other forwarding identifiers until the last hop)

3.4.2.3.5 Comparison of document delivery models

In the channel model, there is a two step process, with the subscriber first requesting
information from all matching publishers directly (matched via the rendezvous system) and
then the subscriber choosing which publisher to receive the information from. This allows the
subscriber to take into account various social, economic, political, security and network
parameters, such as number of hops, jitter, bandwidth speed, personal preference for
publishers, cost to retrieve content, geographic boundaries crossed, and secured/encrypted
links.

By simply matching publish and subscribe requests, no technical or implementation
restrictions are placed on the rendezvous system.

In the document model, the rendezvous system would be expected to perform the matching of
subscribers to a suitable publisher (assuming there is more than one source). While this would
potentially mean a reduced volume of traffic between pub and sub (pub m msgs ->Rvz->1
msg sub), it offloads the choice from the subscriber to the rendezvous node, which may or
may not be desirable.

While this document will not mandate a particular model to use for subscription management,
any AlgId scheme constructed should support both delivery models.

3.4.2.3.6 Requirements for an AlgId scheme

Within subscription management, there are a few key requirements, which the AlgId scheme
must enable a subscriber to fulfil:

1. Calculate and subscribe to parent and children identifiers

2. Calculate how many information items comprise the collection/graph

The latter would be useful for subscribers to check they have received all of the information
items in the graph.

Choice of class of function

While the choice of function should ultimately be left up to the publisher, given the
requirements above, the function is most likely to belong to the “single parent reversible”
category as the subscriber could independently generate parent identifiers. If however the
subscriber has a means to start from or obtain the root Id then the function could feasibly be
“single parent one-way”. This may be because the subscriber starts by receiving the root
frame, or because a prior frame has a link (e.g., RId) to the root. The use of a single parent
reversible function would also provide benefits to other related use-cases, such as
fragmentation or caching, as third party nodes with knowledge of the AlgId scheme could

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 48(65)

generate the identifiers of related frames to ensure that the complete or a useful collection of
information fragments was retrieved.

If delivering data using the basic PSIRP model, it is important to highlight that multiple AlgId
schemes could be used during the delivery process, and in particular for generating the RIds
for the request for tender channels.

In addition, the publisher has the choice between using a direct calculation function or a
stepwise function for algorithm generation. In a stepwise function the subscriber would need
to receive intermediate frames in order to generate the entire AlgId tree. If using a stepwise
function, the subscriber would need to generate every intermediate ID in a path, for example
between an Id at depth 10 and the root, which for larger trees (and non root identifiers) would
become costly. Each frame would also have to indicate its position in the tree to enable the
traversal.

If using a direct function, the subscriber would either need to generate the root Id and then the
desired Id (based on its graph position), or calculate the Id directly (again based on its graph
position).

Overall, while both stepwise and direct calculation functions are adequate, the latency
introduced by a stepwise function having to work through a potentially large number of
intermediate Ids makes the use of a direct calculation function preferred.

AlgId schema communication

Under the banner of subscription management, there are two extremes of content, which may
be transmitted: short pieces of information addressed by only a few Ids (for example news
tickers) and large bulk downloads addressed by many Ids. Regardless of the scheme used,
having to include this in every frame would be a significant overhead in the latter case – by
using some form of inheritance, which could be a one bit “use AlgId scheme referenced by
parent”, this could be greatly reduced while providing only a minimal overhead increase in the
former case.

Relationships and relationship testing

Requirements 1 and 2 above correlate to the relationships of parent/child and reachability,
however the frequency of testing of each of these relationships will vary dramatically between
publications. Therefore, it should be assumed that there could be a potentially large number of
requests for testing both types of relationship, and thus several factors need to be considered:

Static / Dynamic information graph

The first factor the publisher needs to consider when choosing how to enable relationship
testing is whether the information graph will be static (will not change over time) or dynamic (is
likely to be extended/changed in the future). This is because in the latter case, the relationship
information would have to be updated upon every change to the graph, and could result in the
subscriber having stale knowledge of the information graph unless informed of every change.

Location of relationship testing

The second factor is the frequency and complexity of relationship testing required, and thus
the location where this testing should take place. As information graph sizes will vary between
publications (and thus frequency of relationship tests), any of the potential options outlined
under the design choices section could be valid with one exception. When publishing dynamic
information, it would be unwise to transmit relationship information in-packet to make the RIds
self-describing of their relationships in the information graph, as it would require the subscriber
to continuously check the validity of its internal information structure model (e.g., by
maintaining all subscriptions to receive graph changes). Alternatives are to collect the
relationship information together to reduce the amount of RIds that need continual
subscription, or to signal changes in the graph from a reduced number of RIds (e.g., the root
frame).

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 49(65)

3.4.2.3.7 Implementation

In this section, we illustrate how an AlgId scheme could fit with both document delivery models
and conclude with four example AlgId scheme implementations.

Subscription Initiation

As any algorithm used for subscription management should support both document delivery
models, it is worth illustrating what are the differences in requirements, if any.

Taking Figure 3.37 as our example publication consisting of 6 fragments of content, each
identified by a separate RId derived from an arbitrary AlgId scheme, it can be shown that after
the tender request and accept phase, the document delivery is identical for both models.

Figure 3.37: Example publication information structure

Figure 3.38: Document delivery tree using the channel model

Figure 3.39: Document delivery tree using the document model

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 50(65)

Figure 3.40: Content provision using the channel model

Following the steps required for subscribing to a document using the channel model (Figures
3.38 and 3.40), the initial request for content is sent from the receiver to the rendezvous node
over RId1, which is in turn forwarded as a tender request to all matching content publishers
over RId2 and RId3 respectively. Within this request, RId4 is included as the back channel for
all tender responses to be returned to the subscriber. Each content publisher responding to
the tender request includes their own RId, RId 5 and 6 respectively for the subscriber to
communicate their acceptance over. The subscriber, having received replies from both
content providers chooses the first provider and sends an accept message over RId5,
including the RId (RId7) of the channel to fulfil the content provision. The content provision
then begins initially over RId7, and other RIds as described within the AlgId scheme
communicated by the publisher.

How to derive the tender/accept RIds

If the publishers were to use an AlgId scheme to generate the tender and accept channels
(and back channels), the algorithm would have to be transmitted along in the initial content
provision request. Upon the content publishers receiving this message via the rendezvous
node, the reply channel RId could be generated and the response could be sent to the
subscriber. For the content provider, this would mean including in the reply the inputs to the
algorithm used to generate the RId for their reply channel. Unfortunately, as every content
provider (of which there could be a large number) must choose a different RId from every
other content provider without being able to communicate with them, the range of valid inputs
to the algorithm would have to be very large to reduce this possibility. As the number of bits
required transmitting these values would likely approach the size of the RId which they
reference, the benefit to using an algorithm for this stage of the subscription process fades.
Finally, upon the subscriber receiving all of the content provision requests, it would too have to
choose an input from a suitably large range for the content publisher to provide the content
over, as this RId should be kept secret from the other unsuccessful content providers for
security reasons.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 51(65)

In summary, using an algorithm to generate tender and accept channels would result in the
overhead of:

1. Transmitting the algorithm to every content provider

2. Every content provider replying with an input parameter approaching the size of the
RId itself

3. The subscriber replying over the above channel with an accept message and the input
parameters (which again approaches the size of an RId) for the RId to provision the
content over

As such, given the space and computational complexity of using an algorithm and AlgIds, it
would be sensible to include the full RIds for each channel, and allow both the content
provider and the subscriber to choose what these RIds should be themselves.

Algorithm

As the extra RIds required by the channel model for tender and accept requests will be
chosen without the use of an algorithm, the requirements for the algorithm for deriving the
AlgId sused to deliver the content are identical. Regarding relationship testing and generation,
this will be performed at the local node using the in-frame information structure data. The
AlgId scheme will be linked to via a RId, and where children use the same scheme as their
parents, the one bit “user parent AlgId scheme” bit will be set. By using this one bit flag, the
same usually required in the header for the AlgId scheme RId can be removed, increasing the
available space for the payload. Additionally, there will be a parameter length field to indicate
to the receiver how many bits following this field are used for AlgId input parameters, to enable
a flexible and more efficient use of the frame (and again maximising the space for the
payload). This frame format is illustrated in figures 3.41 and 3.42.

Figure 3.41: Frame structure when AlgId scheme is not inherited from parents

Figure 3.42: Frame structure when AlgId scheme is inherited from parents

As the choice of the algorithm will ultimately lie with the publisher depending on the content to
be delivered, below are four examples of how different types of algorithm could be
implemented.

Stepwise

Using the AES 192 algorithm as an example, this could be used as a stepwise function by
requiring that the previously generated RId in the path be used as an input:

f(RIdn-1, key, child count, sibling number) = RIdn

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 52(65)

Figure 3.43: Graphical representation of the AlgId generation process for a stepwise

function
To enable the subscriber to generate parent RIds, each frame would have to store the child
count and sibling number of each node.

Figure 3.44: Example frame structure for a stepwise function

Direct

Given that the primary difference between a direct and stepwise function is whether the root or
the previous ID used as an input, the AES192 algorithm can be used again. While it was
sufficient for the stepwise function to store child count and sibling number, using the algorithm
as a direct function places the requirement that the exact nodes’ location must be stored in
each frame.

Under the heading of direct functions, there are two types of implementation – a single step or
a recursive implementation. In both cases, it is assumed that the subscriber stores the (root)
ID from the initial frame delivery.

Exploring the recursive implementation first, taking a simple tree fragment as illustrated in
Figure 3.45, the frame describing RID A will have to include a description of the entire tree.
Depending on the type of tree, it would have to store varying amounts of information at every
node:

1. Complete and balanced – branching factor and depth.

2. Balanced – branching factor, depth and pruning or growing information depending on
how incomplete the tree was.

3. None of the above – the entire tree description, for example 3.3_0.0, with n different
delimiters to differentiate the n different levels.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 53(65)

Figure 3.45: Tree fragment to illustrate recursive direct function implementation

If the quantity of information to be stored at each node became too large or difficult to
describe, this would be stored to an external location and referenced within the frame.

At the root node, A, the frame structure may look like Figure 3.46, likewise with B (Figure 3.47)
and C (Figure 3.48).

Figure 3.46: Frame structure at node A in Figure 3.45

Figure 3.47: Frame structure at node B in Figure 3.45

Figure 3.48: Frame structure at node C in Figure 3.45

In order to generate a child RId, starting at the root node the AES192 algorithm would have to
be applied twice; once to generate the intermediate RIdB and then again to generate and
subscribe to RIdC. It’s important to note that the subscriber only has to generate the RId of the
intermediate node, not retrieve its contents.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 54(65)

Figure 3.49: Graphical representation of the AlgId generation process for a recursive

direct function

Looking at the single step implementation, as every node can be reached in one step from the
root, this means the tree can be represented as a single level tree (excluding the root) and
thus the only relationships to physically exist are parent and child between the root and every
other node. This means that all structure information is only meta information stored at every
node.

Figure 3.50: Tree fragment to illustrate single step direct function implementation

At the root node, the frame structure could look like Figure 3.51, containing the structure of the
entire tree in a similar manner to that of the recursive direct function implementation,
assuming the tree is not simplified to a one level tree before publishing, and nodes B and C
could look like Figure 3.52.

Figure 3.51: Frame structure at node A in Figure 3.50

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 55(65)

Figure 3.52: Frame structure at node B and C in Figure 3.50

One-way

Another example, this time using a one-way function would be to use the Tiger hash function
(with a digest size of 192) and store the RId of the root node in the header. The inclusion of
the root RId, along with the number of children and sibling number at each node in the graph
would allow the user to generate the entire tree.

Figure 3.53: Example frame structure for a one-way function

The main disadvantage of this scheme is that in order to generate the parent ID of a given
node, the subscriber would have to generate ALL Ids from the root downwards until the child
node was reached again, which for large trees would result in a significant number of
operations. This inflexibility could be mitigated by including extra position information in each
frame, decreasing however the payload size and ultimate efficiency of the transmission
scheme.

External

Figure 3.54: Example frame structure for externally referenced structure information

The final example is that of having the entire publication information structure published to an
external RId, removing the need for the publisher to use any algorithm to generate the RIDs.
By including this RId in every frame, the subscribers can download this information
themselves to get the related RIds to which they may need to subscribe.

Conclusion

By examining the four potential implementations above, it is apparent that once location
information needs to be stored at every frame, there is little difference between the stepwise,
direct and one-way function. As the external implementation removes the need for location
storage all together, it also removes the need for the use of an algorithm, turning the solution
into a relationship tag example, which would offer significant in-frame space savings.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 56(65)

As a result of the example implementations above, no concrete recommendation can be made
regarding which specific implementation to use, except that the choice of implementation
should be left as a decision to be made by the publisher given the type of content to be
published.

3.5 Caching
In the Internet, a large amount of content is transferred repeatedly. Most of the time, the
content is retransmitted from the source to serve different requests coming across the
network. The efforts to reduce the amount of repeated traffic in the current Internet can be
roughly divided into two categories: application level caches, including web caches and
Content Delivery Networks (CDNs), and application-independent caches, which can be often
found in the so-called WAN optimization products. Today, these approaches together offer
significant improvements to network performance by caching some of the content, but they all
represent extra services on top of the actual network (overlays). In the PSIRP architecture,
caching is considered one of the obvious pieces of functionality that a service provider or the
network itself is well equipped to offer.

At the lowest level of the PSIRP architecture, every piece of content is considered to be
addressable. This means that even when information is fragmented to multiple chunks, each
such chunk may possibly be identified with their own rendezvous identifiers (RId). Concepts
like scoping and metadata can be used to determine how the chunks fits into larger data
abstractions, such as documents or streams. In any case, addressing each chunk with a
separate RId allows for considering each one of them as being cache-able and request-able.

Retrieving information chunks from a cache requires subscribers to know the their RIds
beforehand. In the present design choice, before the actual transfer of any data begins, the
subscriber obtains a list of RIds that make up the object it desires – alternatively, such list of
RIds may be computed algorithmically with approaches outlined in Section 3.4.2. It then
requests each chunk (logically) separately; in practice, any node may optimistically push
chunks whenever there is free capacity over its outgoing links. For this, the source constructs
a meta-data object, containing the RIds of the individual chunks, and publishes it. If there is an
update to an object, the source will update the meta-data object, republish it, triggering the
subscriber(s) to get the new version, allowing it to construct the new version of the object, and
even to republish it later.

Forwarding nodes or other caching points in the network, can easily cache the chunks passing
by, with different algorithms. They can then replay them from their own cache whenever
necessary. This means that in the PSIRP architecture, even information with the granularity of
single chunks is independently cache-able and retrievable in the network.

3.5.1 Example Implementation

One of the caching mechanisms developed consists of a single cache store per node
servicing all network interfaces. The cache stores clones of all incoming information chunks.
Duplicate entries are not stored. A cache item is considered old and removed if the time
interval since the item was entered or last used exceeds a predetermined constant value. The
cache retrieval functionality relies on the “subdatachunk” type of request (developed at IPP-
BAS), through which specific publication chunks can be requested, this request being sent
through a reverse forwarding path. Upon receipt of such a request a caching node checks its
cache for the requested content. Any chunks found are sent back to the requesting node and,
if necessary, a modified “subdatachunk” request, including only the requested chunks that
were not found in the cache, is forwarded towards the publisher along the reverse forwarding
path. The process continues upstream until all requested chunks are delivered either by a
caching node or by the publisher. Currently, only caching nodes along the path from
subscriber to publisher are potential data sources, i.e., implementing an opportunistic caching

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 57(65)

mechanism along the forwarding path from publisher to subscriber3. This leads to the following
limitation (see Figure 3.55).

Figure 3.55: Caching Operation

If Sub1 subscribes to a publication, the publication data will be cached in N1 and N2. At some
later time, before the cached data timeout is reached, Sub2 subscribes to the same
publication. The entire publication will be delivered from the cache of N2 and the 'age' of the
delivered cache items in N2 will be reset back to zero. Later on, the timeout interval will be
reached for N1 and the publication data will be deleted. If at this point Sub3 subscribes to the
same publication, the data will be fetched from the publisher even though it is still available
two nodes away at N2. Data caching is implemented as a shared library written in C++ with a
C interface described in detail in the 'Transport functionalities implemented in Blackhawk'
section of Deliverable 3.5 - Final description of the implementation.

3.6 Transport-level Congestion Control
This section outlines the transport-level congestion control (TCC) mechanism that is currently
realized within the PSIRP architecture. It resembles a flow-oriented congestion control
mechanism, which can be publisher- or subscriber-controlled.

3.6.1 TCC – publisher-controlled

In this TCC version, the rate towards the congested area is controlled at the nodes which send
publication data. Unlike in TCP where the communication is of an end-to-end type and the
client notifies the server to reduce its sending rate, here the rate can also be modified at any
intermediate node. In a PSIRP sense, these intermediate nodes act as (re-)publisher of the
information items, hence the name “publisher controlled” (the term “network-assisted” is fitting,
too, pointing to related work in this area).

Figure 3.56: Publisher-controlled TCC

Every node divides traffic into separate flows based on packet FIds and can trigger the TCC
mechanism for a given flow if it receives an out of sequence data packet, indicating a packet
loss in that flow4. An out of sequence packet should only trigger the mechanism at the first
node it is detected. For this purpose, the first node that detects the loss marks the out of
sequence packet. Once marked, the packet will not trigger the TCC mechanism at subsequent

3 It is important to realize that this solution relies on the notion of a reverse forwarding path, which has not formally

been introduced in the PSIRP architecture yet. However, it underlines the potential importance for such
solution.

4 Several methods can be used to implement a sequencing mechanism, such as using algorithmic RIds or a
relationship tagging mechanism (see Section 3.4.2).

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 58(65)

nodes. A node that has reduced its sending rate due to congestion will receive data at a faster
rate than its sending rate. In such conditions the data is buffered in the node's output queue. If
the free buffer space gets low the node will signal the previous node, which in turn will reduce
its sending rate and also start buffering data. A node communicates a congestion condition to
the previous node via special choke packets. A choke packet is sent if either an unmarked out
of sequence packet is received or the buffer space is getting low.

Figure 3.57: Publisher-controlled TCC – rate control

All nodes create a separate outgoing queue for each flow. This allows independent per flow
rate control and avoids a situation where congestion along one route would undesirably affect
the rate towards other uncongested destinations. All queues are processed in a round-robin
fashion. The queue rate control is implemented as a token bucket filter. In addition all nodes
have a single input queue where all incoming packets wait to be processed with the goal of
using this queue as an indicator of node overload. When a node receives a choke packet for a
particular flow, specified by the FId in the choke packet’s payload, it reduces the sending rate
for that particular flow in a single step to a predetermined value. The rate then increases
multiplicatively if no other choke packets concerning this particular flow are received. Since it
takes time for a node to receive and react to the choke packet, a node detecting congestion
will in general experience multiple packet losses and thus send multiple choke packets. In
these conditions special care is taken at the choke receiver to react only to the first choke
packet of a given series. The module is implemented as a shared library written in C++ with a
C interface described in an upcoming technical report outlining the implementation in more
detail.

Remaining issues to be addressed:

 It takes too long for the node receiving the choke to react and reduce the
corresponding sending rate, which significantly degrades TCC efficiency.

 Since nodes distinguish traffic flows based on FIds, in a situation where a subscriber
subscribes to multiple publications from the same publisher, the data packets for the
different publications would be part of the same data flow. For the purpose of traffic
rate control this is sufficient, since a potential congestion would equally affect all data
transfers between a particular publisher-subscriber pair. Lost packet detection however
would not work due to the mixing of flow-sequence-numbers at the intermediate nodes
(although assigning such sequence numbers through a common transport-level
mechanism can prevent such mix-up). A possible solution would be for the
intermediate nodes to use the meta-data to distinguish data packets with same source
and destination but pertaining to different publications.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 59(65)

3.6.2 TCC - subscriber controlled

In this TCC version, which is TCP-like type in the sense that the TCC mechanism is always
triggered by the “client” (subscriber), the rate towards the congested area is controlled
indirectly through the number of chunks the subscriber requests at a time.

Figure 3.58: Subscriber-controlled TCC

The publication is obtained with a series of data requests containing a subset of all data
chunks. A “slow start” algorithm is implemented by the subscriber starting to request two
chunks. If no packet loss is detected the number of requested chunks increases by a factor of
two with every consecutive request. In case of a packet loss, the number of requested chunks
is reduced according to the percentage of lost packets in the previous request. Every
consecutive request is triggered by the receipt of the last packet of the previous request,
which incurs a round-trip-time overhead in the overall publication reception time for every
request, compared to an ideal case where all chunks are requested at once and there is no
packet loss. Such overhead, however, could be reduced through interleaving traffic flows on
the transport level.

3.7 Rendezvous Security
This section addresses two aspects of rendezvous security, namely securing the rendezvous
process itself and providing rendezvous interconnection security.

3.7.1 Securing the Rendezvous Process

An approach for securing an upgraph-based rendezvous process is presented in [Lag10].
Here, we adapt this mechanism to the more general case within the PSIRP architecture. The
solution aims to prevent denial-of-service (DoS) attacks against publishers, the subscribers
and the rendezvous system, while being scalable.

In the example solution, the rendezvous process operates as follows. The publisher sends a
publish request to the rendezvous system. The subscriber also sends a subscription request
for the publication. After matching the publication and subscription requests at the rendezvous
point that serves the particular publication, a topology is formed in collaboration with the inter-
domain topology formation function (see Section 3.1 for design considerations for this
function). Eventually, the publisher will receive an appropriate Fid to send its publication
towards the subscriber(s).

From a security point of view important questions include: whether the publisher can be
trusted to serve the publication? Is a subscriber really at the network location? How to prevent
DoS attacks against the subscriber? How to prevent DoS attacks against the publisher?

The chosen security mechanism is based on the traditional certificate mechanism and control
messages are protected by PLA. On the forwarding layer, zFilter and zFormation mechanism
are used to provide protection against DoS attacks.

In step 0, both the scope and publisher authorize themselves through certificates (C1 and C2).
Mutual authorization is necessary, since without a C2 certificate a hostile scope could induce
a load to the publisher by claiming that the publisher is willing to serve the publication. In step

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 60(65)

1, the publisher sends a publish request to the rendezvous system. This request contains a
certificate from the access network to the publisher (CY) along with certificates C1 and C2. In
the next step (which could happen in advance of step 1), the subscriber sends a subscribe
request to the rendezvous system along with the CX certificate that is given from the access
network to the subscriber. In step 4, the topology formation process is initiated along with the
necessary certificates. Finally, the publication is sent in step 5 along with the certificates.

The main advantage of this approach is that the inter-domain topology formation process can
independently verify the validity of the subscription request and drop invalid requests
immediately, before they even reach the publisher5. This effectively protects publishers from
DoS attacks. C1 and C2 certificates state that the publisher is willing to serve the publication
as well as that it is trusted by the scope. CY and CX certificates provide information about the
publisher's and the subscriber's topological location. Therefore, hostile parties are not able
induce load on the target network by spoofing their location.

Since publication and subscription messages utilize cryptographic identities and certificates, it
is easy to limit the amount of allowed messages per time frame and per destination. This
provides an additional protection, since a hostile subscriber cannot flood indefinitely valid
subscription requests towards the same data source. Furthermore, by revoking or not
renewing the CX and CY certificates a hostile node can be removed from the network.

The abovementioned example can be easily extended to support access control for
subscriptions. In that case the subscriber would authenticate with the scope, and receive an
additional C3 certificate. This certificate would be included in the subscription message and
therefore intermediate nodes are able to enforce access control by verifying the validity of the
C3 certificate.

The rendezvous security mechanism based on certificates and PLA is flexible, and would also
work with other rendezvous solutions.

3.7.2 Rendezvous Interconnect Security

In the proposed global rendezvous system for PSIRP, presented in [PSI09], rendezvous
networks are interconnected using a hierarchical Chord DHT [Gan04] implementation, which
is responsible for storing global scope advertisements on behalf of the originating rendezvous
nodes (RN). When a subscriber initiates a rendezvous and the publication cannot be found
from the local rendezvous network, the subscription request is recursively routed using the
Crescendo algorithm, with the modification that each message is actually a subscription
operation on top of the routing layer as explained in [Vis09]. The results of the rendezvous
operations can be cached in RNs and the interconnect nodes. Rendezvous interconnect
operators are the organizations that provide the nodes for the interconnect architecture.

The rendezvous interconnect sub-hierarchy owner controls each sub-hierarchy of the
rendezvous interconnect (RI). Together these owners authorize RI nodes to join that part of
the hierarchy of the overlay and provide them with an address range from the Chord ring.

The availability of the rendezvous service is secured with the help of RI sub-hierarchy owners
that act as trusted third parties authenticating RI nodes before they can join the DHT
[Cas2002]. Each RI node is assigned an identifier range from the Chord ring using a
temporary certificate signed by the RI sub-hierarchy owner in question. This prevents the Sybil
attack [Dou2002] and the routing table poisoning attack. We assume that only a relatively
small portion of the nodes is malicious, which makes replication an effective solution to
availability. The locally optimized links in the DHT are based on the Canon hierarchy that is
expected to loosely follow the underlying network topology.

The scope owner authorizes a RN to host itself with a certificate, which prevents false scope
advertisements in the RI. The Canon routing algorithm guarantees that the most local

5 It is important to keep in mind that the actual responsibility to drop malicious requests depends on the

implementation of the ITF process, taking into account the design considerations in Section 3.1.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 61(65)

advertisement in the RI hierarchy is always found first. To avoid DDoS attacks against
particular RI nodes, we utilize traffic admission control and forwarding limit at each node of the
RI as presented in [Das05, p. 134]. This is possible because the SIds are uniformly hashed to
the DHT nodes and honest traffic distribution should be roughly balanced when taking caching
into account. As a result, the same subscriber may not continuously rendezvous with the Rids
of the same scope and has the incentive to cache the results of the rendezvous operation. RI
nodes also cache popular rendezvous results and store a subscription in the RI to monitor
updates of the cached data. This makes popular data scalable without large investment in the
home rendezvous networks (HRN) by the scope owner. The RI is further protected from
attacks by the fact that it uses for communication the pub/sub model provided by the
underlying routing and forwarding layers, which makes it difficult to circumvent the DHT
topology. Access controlled scopes require the rendezvous message to reach a HRN trusted
by the scope that can act as a policy enforcement point and encrypt the response with the
public key of the subscriber. Popular access controlled scopes therefore require the
rendezvous network to have capacity large enough to handle incoming subscriptions and
possible DDoS subscription attacks by botnets. To address this, it is possible to replicate the
scope implementation to multiple RNs. To avoid a RI node becoming a hotspot, it is possible
to create multiple advertisements in the RI by adding salt values [Zha01] to the SId before
hashing it to determine the RI node.

On the rendezvous system level, we do not have to consider the tussle for good human-
readable names as the scope names are always relative to a namespace created by the
public key of the SId. On the other hand, each scope advertisement consumes storage
resources of the RI and a fair allocation should be enforced by the RI mechanism. This can be
achieved, for example, with per-node quotas for each sub-hierarchy in the RI, which gives
each sub-hierarchy the incentive to control resource usage of each of its clients. The quotas
can be based on contracts between interconnect operators and their customers.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 62(65)

4 Major PSIRP Architecture Contributions
In this section, we attempt to summarize the main PSIRP contributions on the architectural
level. It is clear that these contributions cannot be seen (and would have not been made)
without the significant contributions on the implementation and evaluation levels. However, we
attempt to frame these contributions in an architectural context.

4.1 From Principles to Invariants
When starting the PSIRP project, it was seen as a crucial exercise to formulate design
principles upon which we could build our work and the (architectural) outcome. This led to the
formulation of four major PSIRP design principles [PSI09], in addition to general design
principles that can be seen as crucial for many large-scale design efforts.

Throughout our work, however, we came to formulate stronger invariants for information-
centric designs that follow these principles as well as the other ideas developed in the PSIRP
project. In other words, rather than loosely outlining principles for a design, we are confident
enough to outline invariants for ANY information-centric architecture akin to PSIRP. This is a
strong architectural result that will need constant evaluation in the future. One of the goals of
such an evaluation is to determine the validity of these invariants for a wider range of
architectures beyond PSIRP.

4.2 From Functions to Design Choices
The information-centric starting point of the PSIRP project naturally led to the formulation of
three crucial functions to be implemented, namely the finding of information, the construction
of a delivery graph for the information, and the delivery of the information along this graph.

Throughout the project, we have come to outline concrete design choices for these functions,
not only implementing the functions themselves but also addressing related issues that come
from their implementation, such as security considerations, considerations for identifier
choices, and many more. This has created a wealth of information around these design
choices from which implementation choices can be selected, evaluated, and tested.

4.3 From Scoping to the Potential for a Rigorous Design Framework
The concept of scoping [PSI09] quickly became a central theme in our architectural work and
throughout the formulation of design choices for various architecture components. With the
formulation of our architecture invariants, however, this concept has been extended towards a
foundation for layering that not only addresses our vision of providing a mapping of social
constructs and other relationship between information items onto a thin inter-networking layer
[PSI08] but also provides the potential for a rigorous design framework under the inter-
networking layer. This layering concept in the context of scoping within implementation
regions provides a region of consistency, which can be used for applying, e.g., optimization
and control theory techniques that fully utilize the heterogeneous network resources that are
likely to exist below the waist of the architecture. While the project has not addressed the
nature of such a rigorous design framework, we firmly believe that our thinking around scoping
and layering has paved the way for such a framework to be studied and applied.

4.4 From a Vision to a Research Agenda
PSIRP has been from the beginning a vision-led effort, driven by the firm belief of a few
people that such a dramatic change of the inter-networking architecture would benefit the
Future Internet in many ways. While this vision was based on some concrete ideas for its
realization, only the execution of the project and the wealth of information that surrounds its
execution have led us to sharpen our research agenda for the future. In other words, the

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 63(65)

project and its partners with which it collaborates so successfully has been working towards
concretizing the potential work in many areas through follow-on projects (such as the
PURSUIT FP7 project which will start in September 2010), national projects (such as various
ICT SHOK efforts in Finland) as well as international collaborations (such as through the
current US NSF efforts in the Future Internet architecture funding round). Much of the work
executed in these efforts is a direct result of the groundwork that PSIRP has laid in its efforts.
Some examples for such a growing research agenda are congestion control and caching
solutions, multi-path resource pooling, algorithmic identification, naming solutions, rendezvous
solutions beyond global rendezvous, applicability of control and optimization theory, and many
more. The formulation of this research agenda would have been impossible without the
collaboration among the PSIRP project partners and the growing collaboration with external
partners.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 64(65)

5 References

[And04] T. Anderson, T. Roscoe, and D. Wetherall. “Preventing internet denial-of-service
with capabilities”. Hotnets II, pages 39–44, 2004.

[Bro09] I. Brown, “Socio-economic drivers of Internet development”, 2009

[Cas02] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan
Wallach, "Secure routing for structured peer-to-peer overlay networks", Proc. of the
5th Usenix Symposium on Operating Systems Design and Implementation, 2002.

[Das05] N. Daswani, “Denial-of-service (dos) attacks and commerce infrastructure in peer-
to-peer networks (draft),” Ph.D. dissertation, Stanford, Jan. 2005.

[Dou02] John Douceur, "The Sybil Attack", In Proceedings for the 1st International
Workshop on Peer-to-Peer Systems (IPTPS'02), 2002.

[Est09] C. Esteve, P. Jokela, P. Nikander, M. Sarela, J. Ylitalo, “Self-routing denial-of-
service resistant capabilities using in-packet bloom filters”, in the 5th European
Conference on Computer Network Defense (EC2ND), 2009

[Far06] A. Farrel, J.-P. Vasseur, and J. Ash. “A path computation element (PCE)-based
architecture”, IETF RFC 4655, 2006.

[Far07] A. Farrel. “MPLS-TE Doesn't Scale”, MPLS 2007, available at
http://www.olddog.co.uk/Farrel_Scaling-MPLS-TE.ppt, 2007.

[Fot09] N. Fotiou, G. C. Polyzos, D. Trossen, “Illustrating a Publish-Subscribe Internet
Architecture”, Proceedings of Future Internet Architectures: New Trends in Service
Architectures (2nd Euro-NF Workshop), 2009.

[Gan04] P. Ganesan, K. Gummadi, H. Garcia-Molina, “Canon in G Major: Designing DHTs
with Hierarchical Structure,” in ICDCS’04 IEEE Computer Society, pp. 263–272,
2004.

[Gel82] D. Gelernter, A. J. Bernstein. “Distributed Communication via Global Buffer”, In
proceedings of the first ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, 1982.

[Hui02] J. Huigen, “OECD reviews of regulatory reform”, 2002

[Jac09] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs, R. L. Braynard,
“Networking Named Content”, ACM CoNext, 2009.

[Jok09] P. Jokela, A. Zahemszky, C. Esteve, S. Arianfar, and P. Nikander, “LIPSIN: Line
speed publish/subscribe inter-networking”, In Proceedings of ACM SIGCOMM’09,
Barcelona, Spain, Aug. 2009.

[Lag10] D. Lagutin, K. Visala, A. Zahemsky, T. Burbridge, and G. F. Marias, “Roles and
Security in a Publish/Subscribe Network Architecture,” In Proceedings of the IEEE
Symposium on Computers and Communications (ISCC'10), Riccione, Italy, June
2010.

[Lak04] K. Lakshminarayanan, I. Stoica, and S. Shenker. “Routing as a service”, 2004.

Document: FP7-INFSO-ICT-216173-PSIRP-D2.5

Date: 2009-08-26 Security: Public

Status: Completed Version: 1.0

PSIRP 65(65)

[Mey07] D. Meyer, “Report from the IAB workshop on routing and addressing, RFC 4984”,
2007

[PSI08] D. Trossen (ed.), “From Design for Tussle to Tussle Networking: PSIRP Vision and
Use Cases”, PSIRP Technical Report TR01-008, 2008

[PSI09] M. Ain, D. Trossen, P. Nikander et. al., “PSIRP Deliverable 2.3: Architecture
Definition, Component Descriptions, and Requirements,” February 2009

[PSI10] J. Riihijarvi (ed.), “Final architecture validation and performance evaluation report”,
2010

[Quo07] B. Quoitin, “Evaluating the benefits of the locator/ID separation”, 2007

[Raj08] J. Rajahalme, “Incentive-compatible caching and peering in data-oriented
networks”, ReArch workshop, 2008

[Urd09] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen, "A Survey of DHT
Security Techniques", ACM Computing Surveys, 2009

[Vai09] C. Vaishnav, “The end of core: should disruptive innovation in telecommunication
invoke discontinuous regulation?”, Ph.D. thesis, MIT CSAIL, 2009

[Vis09] K. Visala, D. Lagutin, and S. Tarkoma, “LANES: An Inter- Domain Data-Oriented
Routing Architecture,” in Proceedings of ReArch’09 workshop, Dec. 2009.

[Wen06] D. Wendlandt, D. Andersen, and A. Perrig. “Fastpass: Providing first-packet
delivery”, Technical report CMU cylab, 2006.

[Yan07] H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni, H. Zhang, and Z. Cai. “Tesseract: A
4D network control plane”, In NSDI’07, 2007.

[Zha01] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An Infrastructure for
Fault-tolerant Wide-area Location and Routing,” UC Berkeley, Tech. Rep., Apr.
2001.

