

 1 of 16

PSIRP
Traffic and Congestion Control

Implementation

TR10-0001
Document Properties:

Title of Contract Publish-Subscribe Internet Routing Paradigm
Acronym PSIRP
Contract Number FP7-INFSO-IST 216173
Start date of the project 1.1.2008
Duration 33 months, until 30.09.2010
Document Title: PSIRP - Traffic and Congestion Control

Implementation
Date of preparation 17.09.2010
Author(s) Ventzislav Koptchev, Kaloyan Petrov,

Vladimir Dimitrov (IPP-BAS)
Responsible of the deliverable Ventzislav Koptchev
 Phone: +35929796615
 Email: vkoptchev@acad.bg; vgd@acad.bg
Target Dissemination Level1: PU
Status of the Document: Final
Version 1.01
Document location http://www.psirp.org
Project web site http://www.psirp.org

1 Dissemination level as defined in the EU Contract:

 PU = Public
 PP = Distribution limited to FP7 participants
 RE = Distribution to a group specified by the consortium
 CO = Confidential, only allowed for members of the consortium

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 2 of 16

Production Properties:

Reviewed by: George Parisis, Dirk Trossen

Revision History:

Revision Date Issued by Description
0.01 2010-08-23 Kaloyan P. Skeleton

0.02 2010-08-30 Kaloyan P. Introduction and Conclusion

0.03 2010-09-15 Ventzislav K. Implementation description

0.04 2010-09-16 Vladimir D. Formatting, editing

0.05 2010-09-16 Kaloyan P. Finished Introduction and Conclusion

0.06 2010-09-17 Vladimir D. Draft.

0.07 2010-09-21 Ventzislav K. Revised after the review

1.0 2010-09-24 Dirk T. Finalized

1.01 2010-11-03 Vladimir D. Cosmetic. Convert to PDF. Final.

This document has been produced in the context of the PSIRP Project. The PSIRP
Project is part of the European Community’s Seventh Framework Program for research
and is as such funded by the European Commission.
All information in this document is provided “as is” and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.
For the avoidance of all doubts, the European Commission has no liability in respect of
this document, which is merely representing the authors view.

Table of Contents
Table of Contents
Abstract ..3
1 Introduction ...3
2 Implementation ...4

2.1 Recovering from packet losses..4
2.2 Traffic and Congestion Control (TCC) ...5

2.2.1 Sender controlled TCC ...5
2.2.2 Subscriber controlled TCC..9
2.2.3 Data caching...9

3 Test Results ..14
4 Conclusion ..15
5 Terminology ..16
6 References..16

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 3 of 16

Abstract
PSIRP is a project for researching the future Internet based on the publish/subscribe
paradigm. It changes the focus from communicating endpoints to information being
exchanged (between whoever can provide this information).
As a new architecture with its own characteristics, some form of congestion control
was needed. We present a first attempt for such traffic and congestion control (TCC),
which has been implemented as a software module for PSIRP Blackhawk prototype,
implementing two stateless rate control mechanisms – sender and receiver controlled.
Lost packet recovery is also implemented. As an addition, node caching was
developed to increase network performance. The proposed TCC scheme is adopting
the notion of a flow from current mechanisms in an information-centric environment. It
is by no means intended to be THE mechanism for TCC but a starting point to
evaluate this important area further.

1 Introduction
Congestion Control is an important part of every network architecture with shared
resources and it can't be realized as a pure end-to-end function only. Congestion is an
inherent network phenomenon and can only be resolved efficiently by some
cooperation of end-systems and the network [Pap2009]. The function of TCC module
in PSIRP is to increase utilization of network interfaces, prevent node overload and
preserve stability of the network. Traffic control, congestion control, lost packet
recovery and caching are all implemented in the TCC module and work together to
achieve higher network utilization.
Lost packets are detected either by a skipped sequence number or exceeded packet
expectancy timeout.
PSIRP provides the possibility to achieve packet level caching in the network by using
packet Ids. The cache is node local and interface independent.
TCC was developed as a standalone software module based on the beta Blackhawk
prototype. Notice that the current prototype does not support any transport mechanism
for achieving the aforementioned goals.

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 4 of 16

2 Implementation
In addition to the existing SUBDATA packet type used in the official Blackhawk
release by subscribers to request all publication packets, a SUBDATACHUNK request
is implemented allowing subscribers to request specific publication chunks. The
mechanism is used by the 'Lost chunk recovery', 'Data caching' and 'Subscriber
controlled Traffic and Congestion Control (TCC)' mechanisms, as described below.
The requested publication chunks are specified by their sequence numbers and are
included in the SUBDATACHUNK packet payload as an array with the number of
requested packets as the first element, followed by the sequence numbers of the
packets.

2.1 Recovering from packet losses
Unlike in TCP, in the PSIRP paradigm there are no acknowledgement packets to aid
with packet loss detection. However a lost packet can still be detected by its unique
sequence number. For that purpose the publisher must send the packets in a natural
sequence. In addition a packet expectancy timeout is set based on the round-trip-time
(RTT) to a particular source, such that after the timeout is reached any missing
packets are considered lost. In order to aid packet loss detection in SUBDATACHUNK
requests, a 'flow' sequence number is added to the packet header where 'flow' stands
for a given SUBDATACHUNK request. In general a SUBDATACHUNK packet is used
to request a non-sequential subset of all publication chunks, which makes the 'flow'
sequence numbers different from the publication sequence numbers. Unlike the
publication sequence numbers, the 'flow' sequence numbers are sequential for the
given SUBDATACHUNK request, with the last sent packet of the request having a
number zero, allowing for lost packet detection within such requests.

The flow sequence numbers raise the following multicast issue. As already stated,
these numbers need to be sequential for every request in order for lost packet
detection to work. A common chunk requested by more than one subscriber will in
general be part of a different chunk subset, thus having a different flow sequence
number in the different replies. For example, let us suppose that a subscriber1
requests chunks 2, 3, 6, 9 and a subscriber2 requests chunks 4, 6, 10. Assuming the
publisher sends the chunks starting with the last, the flow sequence number of the
common chunk 6 would be 2 in the first case and 1 in the second case.

Lost chunk recovery is implemented and relies on the following two functionalities:

− When the last packet of a given request (recognized by a zero 'flow'
sequence number) is received, any missing packets from that request are
considered lost and the subscriber sends a SUBDATACHUNK request
containing only those.

− Cases when the last packet of a request is lost are handled by a program
running in a separate thread. For each active publication an RTT is
calculated when the first requested chunk is received, the program also
keeps track of the system time the last packet was received. It checks all
active publications at regular time intervals, the default value being one

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 5 of 16

second. If for an active publication it is determined that there are missing
requested packets and the time elapsed since the last packet was received
(or the active publication created) is greater than five times the RTT, all
requested packets which are missing are considered lost and a
SUBDATACHUNK request containing only those is sent. If necessary the
process is repeated up to 10 times by default, after which if there are still
missing packets of the given request, no further attempts are made and the
active publication is freed.

There are three configurable parameters:
− the active publication checking interval. Default value 1 sec.
− packet timeout ratio relative to the round trip time. Default value 5.
− number of attempts to get the lost chunks. Default value 10.

2.2 Traffic and Congestion Control (TCC)
The goal of a Traffic and congestion control algorithm is to detect the congestion
condition and reduce the rate at which packets enter the congested area. In the
proposed TCC algorithm two congestion indicators are used – packet loss and node
overload. For the rate control two independent mechanisms have been developed,
which can be activated separately or in parallel.

− The first relies on stochastic fairness queueing (SFQ) and sending rate
reduction of outgoing data using token bucket filters (TBF). The mechanism
is applied at every node along the path. We refer to it as “sender controlled
TCC”, the 'sender' being every node which forwards requested content. In
this scheme the presence of congestion is communicated between adjacent
nodes via special packets, the choke packets.

− The second mechanism - “subscriber controlled TCC” - relies on reduction
of the rate at which the subscribers request data.

2.2.1 Sender controlled TCC
In this TCC version, the rate towards the congested area is controlled at the nodes,
which send publication data. Unlike in TCP where the communication is of an end-to-
end type and the client notifies the server to reduce its sending rate, here the rate can
also be modified at any intermediate node, hence the name 'sender controlled' rather
than 'publisher controlled'.

Figure 1: Sender controlled TCC

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 6 of 16

Every node divides traffic into separate flows based on packet FIds and publication
meta-data and can trigger the TCC mechanism for a given flow if it receives an out of
sequence data packet, indicating a packet loss in that flow. An out of sequence packet
should only trigger the mechanism at the first node it is detected. For the purpose the
first node, which detects the loss marks the out of sequence packet. Once marked, the
packet will not trigger the TCC mechanism at subsequent nodes. A node that has
reduced its sending rate due to congestion will receive data at a faster rate than its
sending rate. In such conditions the data is buffered in the node's output queue. If the
free buffer space gets low the node will signal the previous node, which in turn will
reduce its sending rate and start buffering data. In this way the overload will be
pushed back and spread over space, resulting in small peak overloads. This event,
called spatial spreading, can provide the same amount of congestion buffer space, but
in several nodes, reducing the probability of node overload. Thus if the bottleneck
node is very close to the receiver, there are potential gains due to spatial spreading
[Yun2004].
A node communicates a congestion condition to the previous node via a special choke
packet. The flow sequence number field in the header of the choke packet is initialized
to the flow sequence number of the packet, which triggered the TCC mechanism. The
purpose of this is the following: since it takes time for a node to receive and react to a
choke packet, a congestion detecting node will in general experience multiple packet
losses and thus send multiple choke packets. The TCC mechanism should only react
to the first received choke packet for a given congestion condition. It does so by
keeping track of the flow sequence number of the last packet it has sent before
reducing the sending rate. If an incoming choke packet has a flow sequence number
larger than the number at which the TCC mechanism has reduced the sending rate,
then the choke is a result of a congestion condition, which has already caused rate
reduction and is neglected. Choke packets are only designed for adjacent nodes
communication and are not forwarded. A choke packet is sent if either an unmarked
out of sequence packet is received or the buffer space is getting low.

Figure 2: Flow separation in sender control TCC

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 7 of 16

All nodes create a separate outgoing queue for each flow. This allows for independent
flow rate control. Moreover, the situation where congestion along one route would
undesirably affect the rate towards other uncongested destinations (see

Figure 2) is also avoided. All queues are processed in a round-robin fashion and the
queue rate control is implemented as a token bucket filter. In addition all nodes have a
single input queue where all incoming packets wait to be processed with the goal of
using this queue as an indicator of node overload.
When a node receives a choke packet for a particular flow, specified by the FID in the
packet`s payload, it reduces the sending rate for that particular flow in a single step to
a predetermined value. The rate then increases multiplicatively if no other choke
packets concerning this particular flow are received.

The TCC module is implemented as a shared library written in C++ with a C interface:

− void tbf_enqueueOut(const psirp_fid_t* fid,
if_list_item_t* iface_out, const void* buf, size_t len,
int flags)

The first argument is used to classify traffic flows. It is followed by the output interface,
the beginning of the packet, the packet length and the flags to pass to the sendto()
system call when the packet is dequeued.

− unsigned int tbf_congestionCheck(const psirp_fid_t* fid,
char* classId)

Checks if the output queue corresponding to the FID, provided as the first argument, is
getting full. Returns a congestion status: 0 (no congestion), 2 (the queue is filled
above 50%), 4 (the queue is full). The second argument is set by this method to the ID
of the queue. The caller uses the classId to initialize the payload of the choke packet.
A node that receives a choke packet uses the classId to modify the sending rate of the
particular queue corresponding to the classId.

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 8 of 16

− char* tbf_classify(const psirp_fid_t* fid)

Returns the classId corresponding to the FID. Used for sending choke packets when
the input queue is congested.

− void tbf_reduceRate(char* classId)

Reduces the sending rate of the corresponding queue.

The following parameters can be configured:
 - output queue size – the size in number of packets of the output queues. There
is one such queue for every flow at every node (default value 500).
 - token bucket size – the size in number of tokens of the buckets used to
control the rate at which packets are dequeued from the output queues (default value
10).
 - initial congestion rate - upon receiving a choke packet, the receiver drops the
corresponding sending rate in a single jump to a constant value determined by this
parameter. The output rate of a queue is controlled with a sleep time interval between
consecutive token additions to the bucket corresponding to the queue in question.
This parameter specifies the sleep time in microseconds which is set immediately after
receiving a choke packet.. Default value 1.000.000 microsececonds.

Note: In order to quicken the choke response at the receiver node, any existing tokens
are removed from the corresponding bucket when a choke packet is received.
 - sending rate increase factor - After receiving a choke packet followed by a
sending rate drop, the rate increases multiplicatively by a factor determined by this
parameter. The parameter is a division factor by which the sleep time (between
consecutive token additions) is reduced with every consecutive token addition (default
value 5).
 - output queue threshold – the fraction in [%] of an output queue being full
above which a choke packet is sent to the previous node (default value 50).
 - flow inactivity check interval – the time interval in seconds at which all existing
output queues in a node are checked for activity (default value 120).
 - flow inactivity timeout – when performing an inactivity check, if the module
finds an output queue which has been inactive (no sent packets) for a period longer
than this value in seconds, the queue corresponding to this flow is deleted (default
value 300).
 - input queue size – the maximum number of packets that the input queue can
buffer (default value 500).
 - input queue threshold – the fraction in [%] of an input queue being full above
which a choke packet is sent to the previous node (default value 50).

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 9 of 16

2.2.2 Subscriber controlled TCC

In this TCC version, which is of a TCP-like type in the sense that the TCC mechanism
is always triggered by the “client” (subscriber), the rate towards the congested area is
controlled indirectly through the number of chunks the subscriber requests at a time.

Figure 3: Subscriber-controlled TCC

The publication is obtained with a series of data requests containing a subset of all
data chunks. A “slow start” algorithm is implemented by the subscriber starting to
request three chunks. If no packet loss is detected the number of requested chunks
increases by a factor of two with every consecutive request. In case of a packet loss,
the number of requested chunks is reduced according to the percentage of lost
packets in the previous request. Every consecutive request is triggered by the receipt
of the last packet of the previous request, which incurs an RTT overhead in the overall
publication reception time for every request, compared to an ideal case where all
chunks are requested at once and there is no packet loss. Such overhead, however,
could be reduced through interleaving traffic flows on the transport level. The following
parameters are configurable:
 - initially requested number of packets (default value 3).
 - request rate increase factor. The number of requested packets increases by
this factor with every consecutive request (default value 2).

2.2.3 Data caching

The caching mechanism consists of a single cache store per node servicing all
network interfaces with the following configurable parameters:
 - Check Interval - the time interval in seconds at which the cache is checked for
old entries (default value60).
 - Timeout - the time interval since a cache entry was entered or last used after
which the entry is considered old and removed (default value5 minutes).
 - Size - the size of the cache in number of packets (default value1000). If the
cache size overflows, new entries are not stored until space is available.

The cache retrieval functionality relies on the SUBDATACHUNK type of request,
through which specific publication chunks can be requested. Upon receipt of such a

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 10 of 16

request, a caching node checks its cache for the requested content. Any chunks found
are sent back to the requesting node. To achieve this, the FID from the metadata
header of the SUBDATACHUNK request which triggered the cache lookup is copied
to the forward header FID field of the found cache entry. The returned cache entries
for a given SUBDATACHUNK request are considered a separate flow and the flow
sequence numbers of the entries are set accordingly. In case some of the requested
chunks were not found in the cache, a modified SUBDATACHUNK request, containing
only those chunks is forwarded towards the publisher. For that purpose, the initial
SUBDATACHUNK packet is used with only the packet payload containing the
requested chunk sequence numbers being modified. The process continues upstream
until all requested chunks are delivered either by a caching node or by the publisher.

Currently, only caching nodes along the path from subscriber to publisher are potential
data sources, i.e., implementing an opportunistic caching mechanism along the
forwarding path from publisher to subscriber. This leads to the following limitation (see
Figure 4).

Figure 4: Caching Operation

If Sub1 subscribes to a publication, the publication data will be cached in N1 and N2.
At some later time, before the cached data timeout is reached, Sub2 subscribes to the
same publication. The entire publication will be delivered from the cache of N2 and the
'age' of the delivered cache items in N2 will be reset back to zero. Later on, the
timeout interval will be reached for N1 and the publication data will be deleted. If at
this point Sub3 subscribes to the same publication, the data will be fetched from the
publisher even though it is still available two nodes away at N2.

Data caching is implemented as a shared library written in C++ with a C interface:

− void encache(pkt_ctx_t* pubdata)

The argument is a pre-parsed clone of the original PUBDATA packet received by the
node. The clone ownership is transferred to the cache. The clone is deleted by the
cache cleanup thread when it is determined to be old.

− pkt_ctx_t** getpubdata(pkt_ctx_t* subdatachunk, unsigned
int* len)

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 11 of 16

The first argument is the SUBDATACHUNK packet received by a node containing the
sequence numbers of the requested chunks. The function returns an array containing
all or a subset of the requested chunks and sets the second (output) argument to the
length of the array.

− cache_unlockItem(pkt_ctx_t* pubdata)

Cache entries are returned in a locked state which prevents the cache clean up thread
from removing them. This function is needed to release the locks after the entries
have been processed.

The mechanisms covered in this report have been implemented on top of blackhawk-
v0.3-beta2-20100507. Changes and additions to the original code have been
commented with a name. Following is a short summary of the main modifications.

configure.ac
Added entries for module compilation and logging setup.

helpers/caching
Caching functionality implementation. Threads created:

− cache cleanup thread

helpers/randgen
Congestion simulation functionality implementation, allowing to randomly drop packets
with rate-dependent probability. The probability function used is exp((x-A)/10-1),
where A is a rate threshold parameter and x is the current rate. See Figure 5

Figure 5 Packet drop probability distribution

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 12 of 16

helpers/tbf
Sender controlled TCC implementation. The TBF abbreviation came from 'token
bucket filter' and was the original working title. At this point the naming needs revision
since the module does a lot more than just rate control. Threads created:

− one token addition thread per flow2
− one dequeueing thread per flow
− thread for deleting inactive queues

helpers/laird/laird.py
SUBDATACHUNK request implementation allowing for a subscriber to requested
specific chunks. Throughout the code the original rzv types related to the whole
publication have been changed from PSIRP_HDR_RZV_SUBSCRIBE_DATACHUNK
and PSIRP_HDR_RZV_PUBLISH_DATACHUNK to
PSIRP_HDR_RZV_SUBSCRIBE_DATA and PSIRP_HDR_RZV_PUBLISH_DATA
respectively. New rzv types PSIRP_HDR_RZV_SUBSCRIBE_DATACHUNKS and
PSIRP_HDR_RZV_PUBLISH_DATACHUNKS have been added to denote
SUBDATACHUNK requests.

netiod/Makefile.am
Additions to compile the tbf caching and randgen folder content.

netiod/netiod.c
 1) options to switch on the following independent functionalities
 -j – sender controlled TCC
 -k – subscriber controlled TCC
 -n – caching
 -p – lost packet recovery
 -d [rate threshold] – congestion simulation
 2) the following threads are started in netiod.c
 - if sender controlled TCC is enabled
 - inbound packet queue thread. The entry function pqueueInd() is
defined in psirpd_packet.c.
 - initializes the TBF module with a call to initTBF(). The module
starts additional threads, described in the TBF section.
 - psirpd_out_q_send thread. In order to quicken the choke
response at the choke receiving nodes, the call to psirpd_out_q_send() is moved to a
separate thread when sender controlled TCC is enabled. The entry function
psirpd_out_q_send_thread() is defined in psirpd_out_q.c.

 - if lost packet recovery or subscriber controlled TCC is enabled, the
activepubs_timeout thread is started. As described in the lost packet recovery section,
this is the thread which periodically checks all active publications at the subscribers.

2 Since there are two dedicated threads per flow (one for de-queuing and one for token addition), this
would make a lot of threads and will degrade the performance at some point. If the general idea of the
described TCC turns out worthy of further development, this part of the code will have to be revised.

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 13 of 16

For each active publication the time period since the last received packet is calculated.
If that period exceeds five times the round-trip time all missing chunks in the active
publication which have been requested are considered lost and requested again. The
entry function psirpd_ipc_activepubs_timeout() is defined in psirpd_ipc.c.

netiod/psirp_common_types.h
Inbound queue size and congestion threshold for the sender controlled TCC are
defined here.

netiod/psirpd_fwd_bf.c
If sender controlled TCC is enabled the outbound queue congestion check is done
here and if necessary a choke packet is sent.

netiod/psirpd_ipc.c
Implementation of the SUBDATACHUNK request and subscriber controlled TCC.

netiod/psirpd_net.c
Implementation of cache check, cache retrieval, forward cache request. Enqueueing
of outgoing packets if sender TCC is enabled.

netiod/psirpd_packet.c
Added SUBDATACHUNK and choke packet handlers, data encaching, choke packet
generation, inbound queue congestion check.

netiod/psirpd_rzv.c
Added SUBDATACHUNK and choke packet handlers.

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 14 of 16

3 Test Results
The modules have been tested using:
 - virtual machine networks with various topologies and number of nodes,
running on a 2 x CPU Intel Xeon E5430, 4 cores each, 2.66GHz, 16GB RAM.
 - 4 real machines connected sequentially
 - test publication size - 470 packets
As performance indicators we have monitored the overall publication reception time
and the traffic overhead (repeated packets due to packet loss).
In the virtual machine setup the following is observed with sender-controlled TCC
enabled. A time difference of over 10 seconds builds between the publisher and the
next node after 200 sent packets, resulting in a situation where for a publication of
maximum size (~470 packets), a packet loss at the 2nd node in the middle of the
publication results in a choke being sent with a 10 seconds delay. When the publisher
receives such a choke it has already sent all publication chunks. The sending rate is
not altered since there is nothing more to send. Similar situation is observed when
testing on real machines. The time difference that builds between the publisher and
the next node after 200 sent packets is much smaller – around 0.2 seconds, but it is
still large enough for the publisher to shoot all chunks before it receives any potential
choke packets resulting from a packet loss at the second node in the middle of the
publication or later.

With both sender-controlled and subscriber-controlled TCC enabled the publication is
retrieved with series of data flows with RTT intervals in between. In this case the time
difference that builds between the publisher and the second node is large enough for
the publisher to send all requested chunks in the series before receiving a potential
choke. Even though there is nothing left to send of the currently requested series, it is
possible to reduce the sending rate for a following series after a choke is received. In
our test however this has shown to be counter-productive as the RTT delay between
the requested series has been enough to alleviate any congestion condition, rendering
the rate reduction for the next series unnecessary.
The problem with the time difference described above is only observed between the
publisher and the following node. According to our tests however, that is where most
of the natural (non-artificially invoked) packet loss occurs. When inducing packet loss
with the congestion simulation module at nodes further away from the publisher, the
time delay has not been an issue and the sender-controlled TCC has worked
effectively. The issue at the publisher hurts the overall performance of the sender-
controlled TCC and in our tests the combination of subscriber-controlled TCC and
packet loss recovery has outperformed it significantly when measuring overall
reception time and traffic overhead.

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 15 of 16

4 Conclusion
This report laid out a first attempt to congestion control in a PSIRP environment. We
adopted a basic AIMD type of algorithmic, supplemented by a simple caching
mechanism. We implemented and evaluated the solution in an experimental setting.

We can preliminarily conclude that the AIMD type of algorithms for congestion control
lead to oscillations during high traffic loads and should be further researched and
optimized or replaced with better ones.

Further work should be done to evaluate if metadata could be used to optimize flow
start-up and whether this can be achieve in the presence of caches in the network.

The possibility for middle node congestion reaction is a step forward to future CC alg.,
which will increase network stability by providing faster response time.

TR10-0001 PSIRP - Traffic and Congestion Control Implementation

 16 of 16

5 Terminology
AIMD Additive increase multiplicative decrese
choke packet Special packet used to communicate congestion

condition between adjacent nodes.
classID Based on packet FID and publication meta-data and

used to divide traffic into separate flows.
FID Forwarding Identifier
PSIRP Publish Subscribe Internet Routing Paradigm

RTT Round trip time
Sender TCC A TCC mechanism in which the rate towards the

congested area is controlled directly by the sending
node.

SUBDATA Type of request through which all publication data is
requested at once.

SUBDATACHUNK Type of request through which specific publication
chunks are requested

Subscriber TCC A TCC mechanism in which the rate towards the
congested area is controlled indirectly by the subscriber.

TCC Traffic and Congestion Control software module

6 References

 [Kop2010] Koptchev V., V. Dimitrov, Traffic and Congestion Control in a
Publish/Subscribe network. International conference
CompSysTech’2010, Sofia, 17-18.06.2010. Published in “ACM
International Conference Proceeding Series (ICPS)”, Vol. 471,. Pages:
172-176. ISBN:978-1-4503-0243-2

[Pap2009] Open Research Issues in Internet Congestion Control, Papadimitriou,
Welzl, Scharf, Briscoe, 2009

[Yun2004] Hop-by-hop Congestion Control over a Wireless Multi-hop Network,
YungYi

